J Integr Plant Biol. ›› 2000, Vol. 42 ›› Issue (12): 1235-1242.

• Research Articles • Previous Articles     Next Articles

Ultrafast Spectral Studies of the Primary Processes of Photosynthesis in Spinach and Water Hyacinth Leaves

XU Si-Chuan, SUN Zhao-Yong, AI Xi-Cheng, FENG Juan, ZHANG Qi-Yuan, ZHANG Xing-Kang, YU Fei, TANG Chong-Qin and KUANG Ting-Yun   

Abstract:

The authors have studied the spectroscopic characteristics and the fluorescence lifetime for the chloroplasts from spinach (Spinacia oleracea L.) and water hyacinth (Eichhornia crassipes (Mart) Solms.) plant leaves by absorption spectra, low temperature steady-state fluorescence spectroscopy and single photon counting measurement under the same conditions. The absorption spectra at room temperature for the spinach and water hyacinth chloroplasts are similar, which show that different plants can efficiently absorb light of same wavelength. The low temperature steady-state fluorescence spectroscopy for the water hyacinth chloroplast reveals a poor balance of photon quantum between two photosystems. The fluorescence decays in PSⅡ measured at the natural QA state for the chloroplasts have been fitted by a three-exponential kinetic model. The slow lifetime fluorescence component is assigned to a collection of associated light harvesting Chl a/b proteins, the fast lifetime component to the reaction center of PSⅡ and the middle lifetime component to the delay fluorescence of recombination of P+680 and Pheo-. The excited energy conversion efficiency (η) in PSⅡ RC is 87% and 91% respectively for the water hyacinth and spinach chloroplasts calculated on the 20 ps model. This interesting result is not consistent with what is assumed that the efficiency is 100% in PSⅡ RC. The results in this paper also present a support for the 20 ps electron transfer time constant in PSⅡ RC. On the viewpoint of excitation energy conversion efficiency, the growing rate for the water hyacinth plan is smaller than that for the spinach plant. But, authors' results show those plants can perform highly efficient transfer of photo-excitation energy from the light-harvesting pigment system to the reaction center (approximately 100%).

水葫芦及菠菜光合作用原初光反应的超快光谱研究
徐四川1* 孙照勇1 艾希成1 冯娟1 张启元1 张兴康1 郁飞2 唐崇钦2 匡廷云2

(1. 中国科学院化学研究所分子科学中心分子动态与稳态结构国家重点实验室,北京100080;
2.  中国科学院植物研究所光合作用基础研究开放实验室,北京100093)

摘要:采用相同的分离技术,从水葫芦(Eichhornia crassipes (Mart)Solms.)和菠菜(Spinacia oleracea L.)叶片中提取叶绿体.利用吸收光谱和低温荧光光谱及皮秒荧光单光子计数技术对它们的光谱性质和光系统Ⅱ荧光寿命进行了研究.这两种叶绿体吸收光谱相似,暗示着它们都能高效吸收不同波长的光子.低温荧光光谱显示,水葫芦叶绿体两个光系统之间激发能分配平衡状态差,表明不利于该植物叶绿体高效利用吸收的光子能.采用三指数动力学模型对测定的光系统Ⅱ荧光衰减曲线拟合,水葫芦叶绿体光系统Ⅱ荧光衰减寿命分别是:138,521和1 494 ps;菠菜叶绿体荧光寿命分别是:197,465和1 459ps.并且归属了荧光组分,慢速度荧光衰减是由叶绿素堆积造成的,中等速度荧光衰减源于PSⅡ反应中心重新结合电荷组分,快速度荧光衰减归属于PSⅡ反应中心组分.基于20ps模型计算的水葫芦和菠菜叶绿体PSⅡ反应中心激发能转能效率分别是87%和91%.该结果与转能效率为100%的观点不一致.实验结果支持PSⅡ反应中心电荷分裂20 ps时间常数模型.根据转能效率,水葫芦生长速度不大于菠菜生长速度,但是,水葫芦叶绿体中含有丰富的胡萝卜素成分,其单位质量叶绿体吸收光能大于单位质量菠菜叶绿体吸收的量.实验结果还暗示植物叶绿体体系传能高效,接近于100%.

关键词: 水葫芦;菠菜;叶绿体;单光子计数;荧光寿命;转能效率

Key words: water hyacinth, spinach, chloroplast, single photon counting, fluorescence lifetime, excitation energy conversion efficiency

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22