กก

Early View

  Special Issue: Genomics-assisted Germplasm Improvement in Rice
OsIDD2, a zinc finger and INDETERMINATE DOMAIN protein, regulates secondary cell wall formation
Author: Peng Huang, Hideki Yoshida, Kenji Yano, Shunsuke Kinoshita, Kyosuke Kawai, Eriko Koketsu, Masako Hattori, Sayaka Takehara, Ji Huang, Ko Hirano, Reynante Lacsamana Ordonio, Makoto Matsuoka and Miyako Ueguchi-Tanaka
Received: February 8, 2017         Accepted: May 29, 2017
Online Date: June 2, 2017
DOI: 10.1111/jipb.12557
   
      
    

Previously, we found 123 transcription factors (TFs) as candidate regulators of secondary cell wall (SCW) formation in rice by using phylogenetic and co-expression network analyses. Among them, we examined in this work the role of OsIDD2, a zinc finger and indeterminate domain (IDD) family TF. Its overexpressors showed dwarfism, fragile leaves, and decreased lignin content, which are typical phenotypes of plants defective in SCW formation, whereas its knockout plants showed slightly increased lignin content. The RNA-seq and quantitative reverse transcription polymerase chain reaction analyses confirmed that some lignin biosynthetic genes were downregulated in the OsIDD2-overexpressing plants, and revealed the same case for other genes involved in cellulose synthesis and sucrose metabolism. The transient expression assay using rice protoplasts revealed that OsIDD2 negatively regulates the transcription of genes involved in lignin biosynthesis, cinnamyl alcohol dehydrogenase 2 and 3 (CAD2 and 3), and sucrose metabolism, sucrose synthase 5 (SUS5), whereas an AlphaScreen assay, which can detect the interaction between TFs and their target DNA sequences, directly confirmed the interaction between OsIDD2 and the target sequences located in the promoter regions of CAD2 and CAD3. Based on these observations, we conclude that OsIDD2 is negatively involved in SCW formation and other biological events by downregulating its target genes.

Abstract (Browse 97)   |   References   |   Full Text HTML   |   Full Text PDF       
Ectopic expression of fungal EcGDH improves nitrogen assimilation and grain yield in rice
Author: Dongying Tang, Yuchong Peng, Jianzhong Lin, Changqing Du, Yuanzhu Yang, Dan Wang, Cong Liu, Lu Yan, Xiaoying Zhao, Xia Li, Liangbi Chen and Xuanming Liu
Received: December 28, 2016         Accepted: January 5, 2017
Online Date: January 6, 2017
DOI: 10.1111/jipb.12519
   
      
    

NADP(H)-dependent glutamate dehydrogenases (GDH) in lower organisms have stronger ammonium affinity than those in higher plants. Here we report that transgenic rice overexpressing the EcGDH from Eurotium cheralieri exhibited significantly enhanced aminating activities. Hydroponic and field tests showed that nitrogen assimilation efficiency and grain yields were markedly increased in these transgenic plants, especially at the low nitrogen conditions. These results suggest that EcGDH may have potential to be used to improve nitrogen assimilation and grain yield in rice.

Abstract (Browse 306)   |   References   |   Full Text HTML   |   Full Text PDF       
QTL editing confers opposing yield performance in different rice varieties
Author: Lan Shen, Chun Wang, Yaping Fu, Junjie Wang, Qing Liu, Xiaoming Zhang, Changjie Yan, Qian Qian and Kejian Wang
Received: June 1, 2016         Accepted: September 13, 2016
Online Date: September 15, 2016
DOI: 10.1111/jipb.12501
   
      
    

Grain yield is one of the most important and complex trait for genetic improvement in crops; it is known to be controlled by a number of genes known as quantitative trait loci (QTLs). In the past decade, many yield-contributing QTLs have been identified in crops. However, it remains unclear whether those QTLs confer the same yield performance in different genetic backgrounds. Here, we performed CRISPR/Cas9-mediated QTL editing in five widely-cultivated rice varieties and revealed that the same QTL can have diverse, even opposing, effects on grain yield in different genetic backgrounds.

Abstract (Browse 373)   |   References   |   Full Text HTML   |   Full Text PDF       
  Special Issue: Sexual Plant Reproduction
Arabidopsis ddaptor protein 1G is critical for pollen development
Author: Chong Feng, Jia-Gang Wang, Hai-Hong Liu, Sha Li and Yan Zhang
Received: April 12, 2017         Accepted: May 22, 2017
Online Date: May 24, 2017
DOI: 10.1111/jipb.12556
   
      
    

Pollen development is a pre-requisite for sexual reproduction of angiosperms, during which various cellular activities are involved. Pollen development accompanies dynamic remodeling of vacuoles through fission and fusion, disruption of which often compromises pollen viability. We previously reported that the Y subunit of adaptor protein 1 (AP1G) mediates synergid degeneration during pollen tube reception. Here, we demonstrate that AP1G is essential for pollen development. AP1G loss-of-function resulted in male gametophytic lethality due to defective pollen development. By ultra-structural analysis and fluorescence labeling, we demonstrate that AP1G loss-of-function compromised dynamic vacuolar remodeling during pollen development and impaired vacuolar acidification of pollen. Results presented here support a key role of vacuoles in gametophytic pollen development.

Abstract (Browse 151)   |   References   |   Full Text HTML   |   Full Text PDF       
Acetylglutamate kinase is required for both gametophyte function and embryo development in Arabidopsis thaliana
Author: Jie Huang, Dan Chen, Hailong Yan, Fei Xie, Ying Yu, Liyao Zhang, Mengxiang Sun and Xiongbo Peng
Received: February 10, 2017         Accepted: March 14, 2017
Online Date: March 15, 2017
DOI: 10.1111/jipb.12536
   
      
    

The specific functions of the genes encoding arginine biosynthesis enzymes in plants are not well characterized. We report the isolation and characterization of Arabidopsis thaliana N-acetylglutamate kinase (NAGK), which catalyzes the second step of arginine biosynthesis. NAGK is a plastid-localized protein and is expressed in most developmental processes in Arabidopsis. Heterologous expression of the Arabidopsis NAGK gene in a NAGK-deficient Escherichia coli strain fully restores bacterial growth on arginine-deficient medium. nagk mutant pollen tubes grow more slowly than wild type pollen tubes and the phenotype is restored by either specifically complementation NAGK in pollen or exogenous supplementation of arginine. nagk female gametophytes are defective in micropylar pollen tube guidance due to the fact that female gametophyte cell fate specification was specifically affected. Specific expression of NAGK in synergid cells rescues the defect of nagk female gametophytes. Loss-of-function of NAGK results in Arabidopsis embryos not developing beyond the four-celled embryo stage. The embryo-defective phenotype in nagk/NAGK plants cannot be rescued by watering nagk/NAGK plants with arginine or ornithine supplementation. In conclusion, the results reveal a novel role of NAGK and arginine in regulating gametophyte function and embryo development, and provide valuable insights into arginine transport during embryo development.

Abstract (Browse 203)   |   References   |   Full Text HTML   |   Full Text PDF       
  Sexual Plant Reproduction
    No data

PROMOTIONS

    Photo Gallery
Scan with iPhone or iPad to view JIPB online
Scan using WeChat with your smartphone to view JIPB online
Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn

Copyright © 2017 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q