กก

Early View

  Special Issue: Genomics-assisted Germplasm Improvement in Rice
Ectopic expression of fungal EcGDH improves nitrogen assimilation and grain yield in rice
Author: Dongying Tang, Yuchong Peng, Jianzhong Lin, Changqing Du, Yuanzhu Yang, Dan Wang, Cong Liu, Lu Yan, Xiaoying Zhao, Xia Li, Liangbi Chen and Xuanming Liu
Received: December 28, 2016         Accepted: January 5, 2017
Online Date: January 6, 2017
DOI: 10.1111/jipb.12519
   
      
    

NADP(H)-dependent glutamate dehydrogenases (GDH) in lower organisms have stronger ammonium affinity than those in higher plants. Here we report that transgenic rice overexpressing the EcGDH from Eurotium cheralieri exhibited significantly enhanced aminating activities. Hydroponic and field tests showed that nitrogen assimilation efficiency and grain yields were markedly increased in these transgenic plants, especially at the low nitrogen conditions. These results suggest that EcGDH may have potential to be used to improve nitrogen assimilation and grain yield in rice.

Abstract (Browse 221)   |   References   |   Full Text HTML   |   Full Text PDF       
QTL editing confers opposing yield performance in different rice varieties
Author: Lan Shen, Chun Wang, Yaping Fu, Junjie Wang, Qing Liu, Xiaoming Zhang, Changjie Yan, Qian Qian and Kejian Wang
Received: June 1, 2016         Accepted: September 13, 2016
Online Date: September 15, 2016
DOI: 10.1111/jipb.12501
   
      
    

Grain yield is one of the most important and complex trait for genetic improvement in crops; it is known to be controlled by a number of genes known as quantitative trait loci (QTLs). In the past decade, many yield-contributing QTLs have been identified in crops. However, it remains unclear whether those QTLs confer the same yield performance in different genetic backgrounds. Here, we performed CRISPR/Cas9-mediated QTL editing in five widely-cultivated rice varieties and revealed that the same QTL can have diverse, even opposing, effects on grain yield in different genetic backgrounds.

Abstract (Browse 300)   |   References   |   Full Text HTML   |   Full Text PDF       
  Letters to the Editor
Natural hybridization and reproductive isolation between two Primula speciess
Author: Yanping Xie, Xingfu Zhu, Yongpeng Ma, Jianli Zhao, Li Li and Qingjun Li
Received: March 28, 2017         Accepted: April 17, 2017
Online Date: April 21, 2017
DOI: 10.1111/jipb.12546
   
      
    

Natural hybridization frequently occurs in plants and can facilitate gene flow between species, possibly resulting in species refusion. However, various reproductive barriers block the formation of hybrids and maintain species integrity. Here, we conducted a field survey to examine natural hybridization and reproductive isolation (RI) between sympatric populations of Primula secundiflora and P. poissonii using ten nuclear simple sequence repeat (SSR) loci. Although introgressive hybridization occurred, species boundaries between P. secundiflora and P. poissonii were maintained through nearly complete reproductive isolation. These interfertile species provide an excellent model for studying the RI mechanisms and evolutionary forces that maintain species boundaries.

Abstract (Browse 111)   |   References   |   Full Text HTML   |   Full Text PDF       
Arabidopsis Forkhead-Associated Domain Protein 3 negatively regulates peroxisome division
Author: Mintu Desai, Ronghui Pan and Jianping Hu
Received: February 7, 2017         Accepted: March 21, 2017
Online Date: March 23, 2017
DOI: 10.1111/jipb.12542
   
      
    

Peroxisomes are ubiquitous and dynamic eukaryotic organelles capable of altering their abundance in response to environmental and developmental cues, yet the regulatory mechanism of plant peroxisome division/proliferation is unclear. To identify transcriptional regulators of the peroxisome division factor gene PEX11b, we performed a nuclear pull-down experiment and identified Arabidopsis Forkhead-Associated Domain Protein 3 (FHA3) as a novel protein that binds to the promoter of PEX11b. Our data supported the conclusion that, in contrast to the previously identified HY5 HOMOLOG (HYH) protein that promotes the transcription of PEX11b, FHA3 is a negative regulator of PEX11b expression and peroxisome division.

Abstract (Browse 207)   |   References   |   Full Text HTML   |   Full Text PDF       
  Cell and Developmental Biology
Poly(ADP-ribose) polymerases regulate cell division and development in Arabidopsis roots
Author: Caifeng Liu, Qiao Wu, Weiwei Liu, Zongyin Gu, Wenjing Wang, Ping Xu, Hong Ma and Xiaochun Ge
Received: February 3, 2017         Accepted: February 28, 2017
Online Date: March 6, 2017
DOI: 10.1111/jipb.12530
   
      
    

Root organogenesis involves cell division, differentiation and expansion. The molecular mechanisms regulating root development are not fully understood. In this study, we identified poly(adenosine diphosphate (ADP)-ribose) polymerases (PARPs) as new players in root development. PARP catalyzes poly(ADP-ribosyl)ation of proteins by repeatedly adding ADP-ribose units onto proteins using nicotinamide adenine dinucleotide (NAD+) as the donor. We found that inhibition of PARP activities by 3-aminobenzomide (3-AB) increased the growth rates of both primary and lateral roots, leading to a more developed root system. The double mutant of Arabidopsis PARPs, parp1parp2, showed more rapid primary and lateral root growth. Cyclin genes regulating G1-to-S and G2-to-M transition were up-regulated upon treatment by 3-AB. The proportion of 2C cells increased while cells with higher DNA ploidy declined in the roots of treated plants, resulting in an enlarged root meristematic zone. The expression level of PARP2 was very low in the meristematic zone but high in the maturation zone, consistent with a role of PARP in inhibiting mitosis and promoting cell differentiation. Our results suggest that PARPs play an important role in root development by negatively regulating root cell division.

Abstract (Browse 154)   |   References   |   Full Text HTML   |   Full Text PDF       
  Sexual Plant Reproduction
Acetylglutamate kinase is required for both gametophyte function and embryo development in Arabidopsis thaliana
Author: Jie Huang, Dan Chen, Hailong Yan, Fei Xie, Ying Yu, Liyao Zhang, Mengxiang Sun and Xiongbo Peng
Received: February 10, 2017         Accepted: March 14, 2017
Online Date: March 15, 2017
DOI: 10.1111/jipb.12536
   
      
    

The specific functions of the genes encoding arginine biosynthesis enzymes in plants are not well characterized. We report the isolation and characterization of Arabidopsis thaliana N-acetylglutamate kinase (NAGK), which catalyzes the second step of arginine biosynthesis. NAGK is a plastid-localized protein and is expressed in most developmental processes in Arabidopsis. Heterologous expression of the Arabidopsis NAGK gene in a NAGK-deficient Escherichia coli strain fully restores bacterial growth on arginine-deficient medium. nagk mutant pollen tubes grow more slowly than wild type pollen tubes and the phenotype is restored by either specifically complementation NAGK in pollen or exogenous supplementation of arginine. nagk female gametophytes are defective in micropylar pollen tube guidance due to the fact that female gametophyte cell fate specification was specifically affected. Specific expression of NAGK in synergid cells rescues the defect of nagk female gametophytes. Loss-of-function of NAGK results in Arabidopsis embryos not developing beyond the four-celled embryo stage. The embryo-defective phenotype in nagk/NAGK plants cannot be rescued by watering nagk/NAGK plants with arginine or ornithine supplementation. In conclusion, the results reveal a novel role of NAGK and arginine in regulating gametophyte function and embryo development, and provide valuable insights into arginine transport during embryo development.

Abstract (Browse 129)   |   References   |   Full Text HTML   |   Full Text PDF       
  Molecular Physiology
A zinc finger protein, interacted with cyclophilin, affects root development via IAA pathway in rice
Author: Peng Cui, Hongbo Liu, Songlin Ruan, Basharat Ali, Rafaqat Ali Gill, Huasheng Ma, Zhifu Zheng and Weijun Zhou
Received: November 4, 2016         Accepted: February 28, 2017
Online Date: March 7, 2017
DOI: 10.1111/jipb.12531
   
      
    

The plant hormone auxin plays a crucial role in lateral root development. To better understand the molecular mechanisms underlying lateral root formation, an auxin-responsive gene OsCYP2 (Os02g0121300) was characterized from rice. Compared to the wild type, OsCYP2-RNAi (RNA interference) lines exhibited distinctive defects in lateral root development. Yeast two-hybrid and glutathione S-transferase pull-down results confirmed that OsCYP2 interacted with a C2HC-type zinc finger protein (OsZFP, Os01g0252900) which is located in the rice nucleus. T2 OsZFP-RNAi lines had significantly fewer lateral roots than did wild-type plants, which suggests a role for OsCYP2 and OsZFP in regulating lateral root development. Quantitative real-time polymerase chain reaction showed that the expression of certain Aux/IAA (auxin/indole-3-acetic acid) genes was altered in OsCYP2- and OsZFP-RNAi lines in response to IAA. These findings imply that OsCYP2 and OsZFP participate in IAA signal pathways controlling lateral root development. More importantly, OsIAA11 showed functional redundancy not only in OsCYP2-RNAi lines but also in OsZFP-RNAi lines, which provides important clues for the elucidation of mechanisms controlling lateral root development in response to auxin.

Abstract (Browse 152)   |   References   |   Full Text HTML   |   Full Text PDF       
  Metabolism and Biochemistry
JA but not JA-Ile is the cell-nonautonomous signal activating JA mediated systemic defenses to herbivory in Nicotiana attenuata
Author: Tohir A. Bozorov, Son Truong Dinh and Ian T. Baldwin
Received: November 5, 2016         Accepted: April 17, 2017
Online Date: April 19, 2017
DOI: 10.1111/jipb.12545
   
      
    

The whole-plant activation of defense responses to wounding and herbivory requires systemic signaling in which jasmonates (JAs) play a pivotal role. To examine the nature of the slower cell-nonautonomous as compared to the rapid cell-autonomous signal in mediating systemic defenses in Nicotiana attenuata, reciprocal stem grafting-experiments were used with plants silenced the JA biosynthetic gene ALLENE OXIDE CYCLASE (irAOC) or plants transformed to create JA sinks by ectopically expressing Arabidopsis JA-O-methyltransferase (ovJMT). JA-impaired irAOC plants were defective in the cell-nonautonomous signaling pathway but not in JA transport. Conversely, ovJMT plants abrogated the production of a graft-transmissible JA signal. Both genotypes displayed unaltered cell-autonomous signaling. Defense responses (17-hydroxygeranyllinalool diterpene glycosides, nicotine, and proteinase inhibitors) and metabolite profiles were differently induced in irAOC and ovJMT scions in response to graft-transmissible signals from elicited wild type stocks. The performance of Manduca sexta larvae on the scions of different graft combinations was consistent with the patterns of systemic defense metabolite elicitations. Taken together, we conclude that JA and possibly MeJA, but not JA-Ile, either directly functions as a long-distance transmissible signal or indirectly interacts with long distance signal(s) to activate systemic defense responses.

Abstract (Browse 99)   |   References   |   Full Text HTML   |   Full Text PDF       

PROMOTIONS

    Photo Gallery
Scan with iPhone or iPad to view JIPB online
Scan using WeChat with your smartphone to view JIPB online
Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn

Copyright © 2017 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q