Rice Genomics and Agriculture Updated in October 2019
Inflorescence architecture is a major determinant of spikelet numbers per panicle, a key component of grain yield in rice. In this study, Short Panicle 3 (SP3) was identified from a short panicle 3 (sp3) mutant in which T‐DNA was inserted in the promoter of SP3, resulting in a knockdown mutation. SP3 encodes a DNA binding with one finger (Dof) transcriptional activator. Quantitative real time (qRT)‐PCR and RNA in situ hybridization assays confirmed that SP3 is preferentially expressed in the young rice inflorescence, specifically in the branch primordial regions. SP3 acts as a negative regulator of inflorescence meristem abortion by upregulating APO2/RFL. SP3 both up‐ and downregulates expression of genes involved in cytokinin biosynthesis and catabolism, respectively. Consequently, cytokinin concentrations are decreased in young sp3 panicles, thereby leading to small panicles having fewer branches and spikelets. Our findings support a model in which SP3 regulates panicle architecture by modulating cytokinin homeostasis. Potential applications to rice breeding, through gene‐editing of the SP3 promoter are assessed.
Brassinosteroids (BRs) play crucial roles in many aspects of plant development. However, their function in spikelet differentiation and degeneration in rice (Oryza sativa L.) remains unclear. Here, we investigated the roles of these phytohormones in spikelet development in field‐grown rice subjected to five different nitrogen (N) fertilization treatments during panicle differentiation. BR levels and expression of genes involved in BR biosynthesis and signal transduction were measured in spikelets. Pollen fertility and the number of differentiated spikelets were closely associated with 24‐epicastasterone (24‐epiCS) and 28‐homobrassinolide (28‐homoBL) levels in spikelets. Enhanced BR biosynthesis and signal transduction, in response to N treatment, enhanced spikelet differentiation, reduced spikelet degeneration, and increased grain yield. Increases in proton‐pumping ATPase activity, ATP concentration, energy charge, and antioxidant system (AOS) levels were consistent with 24‐epiCS and 28‐homoBL concentrations. Exogenous application of 24‐epiCS or 28‐homoBL on young panicles induced a marked increase in endogenous 24‐epiCS or 28‐homoBL levels, energy charge, AOS levels, spikelet differentiation, and panicle weight. The opposite effects were observed following treatment with a BR biosynthesis inhibitor. Our findings indicate that, in rice, BRs mediate the effects of N fertilization on spikelet development and play a role in promoting spikelet development through increasing AOS levels and energy charge during panicle development.
Pyruvate kinase (PK) is a key enzyme in glycolysis and carbon metabolism. Here, we isolated a rice (Oryza sativa) mutant, w59, with a white-core floury endosperm. Map-based cloning of w59 identified a mutation in OsPKpα1, which encodes a plastidic isoform of PK (PKp). OsPKpα1 localizes to the amyloplast stroma in the developing endosperm, and the mutation of OsPKpα1 in w59 decreases the plastidic PK activity, resulting in dramatic changes to the lipid biosynthesis in seeds. The w59 grains were also characterized by a marked decrease in starch content. Consistent with a decrease in number and size of the w59 amyloplasts, large empty spaces were observed in the central region of the w59 endosperm, at the early grain-filling stage. Moreover, a phylogenetic analysis revealed four potential rice isoforms of OsPKp. We validated the in vitro PK activity of these OsPKps through reconstituting active PKp complexes derived from inactive individual OsPKps, revealing the heteromeric structure of rice PKps, which was further confirmed using a protein-protein interaction analysis. These findings suggest a functional connection between lipid and starch synthesis in rice endosperm amyloplasts.
Precise replacement of an existing allele in commercial cultivars with an elite allele is a major goal in crop breeding. A single nucleotide polymorphism in the NRT1.1B gene between japonica and indica rice is responsible for the improved nitrogen use efficiency in indica rice. Herein, we precisely replaced the japonica NRT1.1B allele with the indica allele, in just one generation, using CRISPR/Cas9 gene‐editing technology. No additional selective pressure was needed to enrich the precise replacement events. This work demonstrates the feasibility of replacing any genes with elite alleles within one generation, greatly expanding our ability to improve agriculturally important traits.
H3K4me3 plays important roles in development, transcription, and environmental responses. Here, we report that SDG721 (SET‐domain group protein 721) and SDG705 are involved in regulating rice development. SDG721 and SDG705 encode TRITHORAX‐like proteins, which appear to modulate H3K4 methylation levels. Loss of SDG721 and SDG705 function resulted in GA‐deficient phenotypes, including semi‐dwarfism, reduced cell length, and reduced panicle branching. The transcripts levels and H3K4me3 levels of GA biosynthesis genes and GA signaling pathway genes were downregulated in the sdg721 sdg705 plants. Together, these results suggest that SDG721 and SDG705 regulate H3K4 methylation, which is crucial for plant development in rice.
Calcium-dependent protein kinases (CPKs) are serine/threonine protein kinases that function in plant stress responses. Although CPKs are recognized as key messengers in signal transduction, the specific roles of CPKs and the molecular mechanisms underlying their activity remain largely unknown. Here, we characterized the function of OsCPK24, a cytosol-localized calcium-dependent protein kinase in rice. OsCPK24 was universally and highly expressed in rice plants and was induced by cold treatment. Whereas OsCPK24 knockdown plants exhibited increased sensitivity to cold compared to wild type (WT), OsCPK24-overexpressing plants exhibited increased cold tolerance. Plants overexpressing OsCPK24 exhibited increased accumulation of proline (an osmoprotectant) and glutathione (an antioxidant) and maintained a higher GSH/GSSG (reduced glutathione to oxidized glutathione) ratio during cold stress compared to WT. In addition to these effects in response to cold stress, we observed the kinase activity of OsCPK24 varied under different calcium concentrations. Further, OsCPK24 phosphorylated OsGrx10, a glutathione-dependent thioltransferase, at rates modulated by changes in calcium concentration. Together, our results support the hypothesis that OsCPK24 functions as a positive regulator of cold stress tolerance in rice, a process mediated by calcium signaling and involving phosphorylation and the inhibition of OsGrx10 to sustain higher glutathione levels.
We previously reported a spotted-leaf mutant pelota (originally termed HM47) in rice displaying arrested growth and enhanced resistance to multiple races of Xanthomonas oryzae pv. oryzae. Here, we report the map-based cloning of the causal gene OsPELOTA (originally termed splHM47). We identified a single base substitution from T to A at position 556 in the coding sequence of OsPELOTA, effectively mutating phenylalanine to isoleucine at position 186 in the translated protein sequence. Both functional complementation and over-expression could rescue the spotted-leaf phenotype. OsPELOTA, a paralogue to eukaryotic release factor 1 (eRF1), shows high sequence similarity to Drosophila Pelota and also localizes to the endoplasmic reticulum and plasma membrane. OsPELOTA is constitutively expressed in roots, leaves, sheaths, stems, and panicles. Elevated levels of salicylic acid and decreased level of jasmonate were detected in the pelota mutant. RNA-seq analysis confirmed that genes responding to salicylic acid were upregulated in the mutant. Our results indicate that the rice PELOTA protein is involved in bacterial leaf blight resistance by activating the salicylic acid metabolic pathway.
The phytohormone gibberellin (GA) plays essential roles in plant growth and development. Here, we report that OsINO80, a conserved ATP-dependent chromatin-remodeling factor in rice (Oryza sativa), functions in both GA biosynthesis and diverse biological processes. OsINO80-knockdown mutants, derived from either T-DNA insertion or RNA interference, display typical GA-deficient phenotypes, including dwarfism, reduced cell length, late flowering, retarded seed germination and impaired reproductive development. Consistently, transcriptome analyses reveal that OsINO80 knockdown results in downregulation by more than two-fold of over 1,000 genes, including the GA biosynthesis genes CPS1 and GA3ox2, and the dwarf phenotype of OsINO80-knockdown mutants can be rescued by the application of exogenous GA3. Chromatin immunoprecipitation (ChIP) experiments show that OsINO80 directly binds to the chromatin of CPS1 and GA3ox2 loci. Biochemical assays establish that OsINO80 specially interacts with histone variant H2A.Z and the H2A.Z enrichments at CPS1 and GA3ox2 are decreased in OsINO80-knockdown mutants. Thus, our study identified a rice chromatin-remodeling factor, OsINO80, and demonstrated that OsINO80 is involved in regulation of the GA biosynthesis pathway and plays critical functions for many aspects of rice plant growth and development.
Previously, we found 123 transcription factors (TFs) as candidate regulators of secondary cell wall (SCW) formation in rice by using phylogenetic and co-expression network analyses. Among them, we examined in this work the role of OsIDD2, a zinc finger and indeterminate domain (IDD) family TF. Its overexpressors showed dwarfism, fragile leaves, and decreased lignin content, which are typical phenotypes of plants defective in SCW formation, whereas its knockout plants showed slightly increased lignin content. The RNA-seq and quantitative reverse transcription polymerase chain reaction analyses confirmed that some lignin biosynthetic genes were downregulated in the OsIDD2-overexpressing plants, and revealed the same case for other genes involved in cellulose synthesis and sucrose metabolism. The transient expression assay using rice protoplasts revealed that OsIDD2 negatively regulates the transcription of genes involved in lignin biosynthesis, cinnamyl alcohol dehydrogenase 2 and 3 (CAD2 and 3), and sucrose metabolism, sucrose synthase 5 (SUS5), whereas an AlphaScreen assay, which can detect the interaction between TFs and their target DNA sequences, directly confirmed the interaction between OsIDD2 and the target sequences located in the promoter regions of CAD2 and CAD3. Based on these observations, we conclude that OsIDD2 is negatively involved in SCW formation and other biological events by downregulating its target genes.
Since its domestication from wild rice thousands of years ago, rice has been cultivated largely through transplantation. During transplantation from the nursery to the paddy field, rice seedlings experience transplantation shock which affects their physiology and production. However, the mechanisms underlying transplantation shock and rice adaptation to this shock are largely unknown. Here, we isolated a transplant-sensitive chloroplast-deficient (tsc1) rice mutant that produces albino leaves after transplantation. Blocking light from reaching the juvenile leaves and leaf primordia caused chloroplast deficiencies in transplanted tsc1 seedlings. TSC1 encodes a noncanonical adenosine triphosphate-binding cassette (ABC) transporter homologous to AtNAP14 and is of cyanobacterial origin. We demonstrate that TSC1 controls plastid development in rice under dark conditions, and functions independently of light signaling. However, light rescued the tsc1 mutant phenotype in a spectrum-independent manner. TSC1 was upregulated following transplantation, and modulated the iron and copper levels, thereby regulating prolamellar body formation during the early P4 stage of leaf development. Therefore, TSC1 is indispensable for plastid development in the absence of light, and contributes to adaptation to transplantation shock. Our study provides insight into the regulation of plastid development and establishes a framework for improving recovery from transplantation shock in rice.
Chloroplast genes are transcribed by the plastid-encoded RNA polymerase (PEP) or nucleus-encoded RNA polymerase. FRUCTOKINASE-LIKE PROTEINS (FLNs) are phosphofructokinase-B (PfkB)-type carbohydrate kinases that act as part of the PEP complex; however, the molecular mechanisms underlying FLN activity in rice remain elusive. Previously, we identified and characterized a heat-stress sensitive albino (hsa1) mutant in rice. Map-based cloning revealed that HSA1 encodes a putative OsFLN2. Here, we further demonstrated that knockdown or knockout of the OsFLN1, a close homolog of HSA1/OsFLN2, considerably inhibits chloroplast biogenesis and the fln1 knockout mutants, created by clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associate protein 9, exhibit severe albino phenotype and seedling lethality. Moreover, OsFLN1 localizes to the chloroplast. Yeast two-hybrid, pull-down and bimolecular fluorescence complementation experiments revealed that OsFLN1 and HSA1/OsFLN2 interact with THIOREDOXINZ (OsTRXz) to regulate chloroplast development. In agreement with this, knockout of OsTRXz resulted in a similar albino and seedling lethality phenotype to that of the fln1 mutants. Quantitative reverse transcription polymerase chain reaction and immunoblot analysis revealed that the transcription and translation of PEP-dependent genes were strongly inhibited in fln1 and trxz mutants, indicating that loss of OsFLN1, HSA1/OsFLN2, or OsTRXz function perturbs the stability of the transcriptionally active chromosome complex and PEP activity. These results show that OsFLN1 and HSA1/OsFLN2 contribute to chloroplast biogenesis and plant growth.
Grain yield is one of the most important and complex trait for genetic improvement in crops; it is known to be controlled by a number of genes known as quantitative trait loci (QTLs). In the past decade, many yield-contributing QTLs have been identified in crops. However, it remains unclear whether those QTLs confer the same yield performance in different genetic backgrounds. Here, we performed CRISPR/Cas9-mediated QTL editing in five widely-cultivated rice varieties and revealed that the same QTL can have diverse, even opposing, effects on grain yield in different genetic backgrounds.
NADP(H)-dependent glutamate dehydrogenases (GDH) in lower organisms have stronger ammonium affinity than those in higher plants. Here we report that transgenic rice overexpressing the EcGDH from Eurotium cheralieri exhibited significantly enhanced aminating activities. Hydroponic and field tests showed that nitrogen assimilation efficiency and grain yields were markedly increased in these transgenic plants, especially at the low nitrogen conditions. These results suggest that EcGDH may have potential to be used to improve nitrogen assimilation and grain yield in rice.
Rice grain filling determines grain weight, final yield and grain quality. Here, a rice defective grain filling mutant, gif2, was identified. Grains of gif2 showed a slower filling rate and a significant lower final grain weight and yield compared to wild-type. The starch content in gif2 was noticeably decreased and its physicochemical properties were also altered. Moreover, gif2 endosperm cells showed obvious defects in compound granule formation. Positional cloning identified GIF2 to encode an ADP-glucose pyrophosphorylase (AGP) large subunit, AGPL2; consequently, AGP enzyme activity in gif2 endosperms was remarkably decreased. GIF2 is mainly expressed in developing grains and the coded protein localizes in the cytosol. Yeast two hybrid assay showed that GIF2 interacted with AGP small subunits OsAGPS1, OsAGPS2a and OsAGPS2b. Transcript levels for granule-bound starch synthase, starch synthase, starch branching enzyme and starch debranching enzyme were distinctly elevated in gif2 grains. In addition, the level of nucleotide diversity of the GIF2 locus was extremely low in both cultivated and wild rice. All of these results suggest that GIF2 plays important roles in the regulation of grain filling and starch biosynthesis during caryopsis development, and that it has been preserved during selection throughout domestication of modern rice.
Grain yield in rice (Oryza sativa L.) is closely related to leaf and flower development. Coordinative regulation of leaf, pollen, and seed development in rice as a critical biological and agricultural question should be addressed. Here we identified two allelic rice mutants with narrow and semi-rolled leaves, named narrow and rolled leaf 2-1 (nrl2-1) and nrl2-2. Map-based molecular cloning revealed that NRL2 encodes a novel protein with unknown biochemical function. The mutation of NRL2 caused pleiotropic effects, including a reduction in the number of longitudinal veins, defective abaxial sclerenchymatous cell differentiation, abnormal tapetum degeneration and microspore development, and the formation of more slender seeds compared with the wild type (WT). The NRL2 protein interacted with Rolling-leaf (RL14), causing the leaves of the nrl2 mutants to have a higher cellulose content and lower lignin content than the WT, which may have been related to sclerenchymatous cell differentiation and tapetum degeneration. Thus, this gene is an essential developmental regulator controlling fundamental cellular and developmental processes, serving as a potential breeding target for high-yielding rice cultivars.
Leaf senescence plays an important role in crop developmental processes that dramatically affect crop yield and grain quality. The genetic regulation of leaf senescence is complex, involving many metabolic and signaling pathways. Here, we identified a rapid leaf senescence 3 (rls3) mutant that displayed accelerated leaf senescence, shorter plant height and panicle length, and lower seed set rate than the wild type. Map-based cloning revealed that RLS3 encodes a protein with AAA+ domain, localizing it to chloroplasts. Sequence analysis found that the rls3 gene had a single-nucleotide substitution (GA) at the splice site of the 10th intron/11th exon, resulting in the cleavage of the first nucleotide in 11th exon and premature termination of RLS3 protein translation. Using transmission electron microscope, the chloroplasts of the rls3 mutant were observed to degrade much faster than those of the wild type. The investigation of the leaf senescence process under dark incubation conditions further revealed that the rls3 mutant displayed rapid leaf senescence. Thus, the RLS3 gene plays key roles in sustaining the normal growth of rice, while loss of function in RLS3 leads to rapid leaf senescence. The identification of RLS3 will be helpful to elucidate the mechanisms involved in leaf senescence in rice.
Two phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine strongly accumulate in rice (Oryza sativa cv. Nipponbare) leaves subjected to attack of chewing and sucking herbivores. Here we identified and characterized in vitro three novel rice genes that mediated coumaroyl-CoA/feruloyl-CoA conjugation to polyamines, putrescine and agmatine. Interestingly, two genes were highly specific for their polyamine substrates, encoding putrescine N-hydroxycinnamoyltransferase and agmatine N-hydroxycinnamoyltransferase, while the third enzyme could use both polyamines and it was therefore annotated as putrescine/agmatine N-hydroxycinnamoyltransferase. All genes were preferentially expressed in rice roots and developing flowers, and in addition, the putrescine/agmatine N-hydroxycinnamoyltransferase transcripts were strongly induced by wounding in the young rice leaves. Because the wound response of this gene was only partially suppressed in the jasmonoyl-L-isoleucine deficient plants (Osjar1), it suggests that its upregulation (as well as inducible PAs in rice) may be largely independent of jasmonoyl-L-isoleucine signaling pathway. The finding of three closely related genes with a similar and/or overlapping activity in PA biosynthesis provides another striking example of rapid diversification of plant metabolism in response to environmental stresses in nature.
Traits such as grain shape, panicle length and seed shattering, play important roles in grain yield and harvest. In this study, the cloning and functional analysis of PANICLE TRAITS 2 (PT2), a novel gene from the Indica rice Chuandali (CDL), is reported. PT2 is synonymous with Growth-Regulating Factor 4 (OsGRF4), which encodes a growth-regulating factor that positively regulates grain shape and panicle length and negatively regulates seed shattering. Higher expression of OsGRF4 is correlated with larger grain, longer panicle and lower seed shattering. A unique OsGRF4 mutation, which occurs at the OsmiRNA396 target site of OsGRF4, seems to be associated with high levels of OsGRF4 expression, and results in phenotypic difference. Further research showed that OsGRF4 regulated two cytokinin dehydrogenase precursor genes (CKX5 and CKX1) resulting in increased cytokinin levels, which might affect the panicle traits. High storage capacity and moderate seed shattering of OsGRF4 may be useful in high-yield breeding and mechanized harvesting of rice. Our findings provide additional insight into the molecular basis of panicle growth.
The rice endosperm plays crucial roles in nourishing the embryo during embryogenesis and seed germination. Although previous studies have provided the general information about rice endosperm, a systematic investigation throughout the entire endosperm developmental process is still lacking. In this study, we examined in detail rice endosperm development on a daily basis throughout the 30-day period of post-fertilization development. We observed that coenocytic nuclear division occurred in the first 2 days after pollination (DAP), cellularization occurred between 3 and 5 DAP, differentiation of the aleurone and starchy endosperm occurred between 6 and 9 DAP, and accumulation of storage products occurred concurrently with the aleurone/starchy endosperm differentiation from 6 DAP onwards and was accomplished by 21 DAP. Changes in cytoplasmic membrane permeability, possibly caused by programmed cell death, were observed in the central region of the starchy endosperm at 8 DAP, and expanded to the whole starchy endosperm at 21 DAP when the aleurone is the only living component in the endosperm. Further, we observed that a distinct multi-layered dorsal aleurone formed near the dorsal vascular bundle, while the single- or occasionally two-cell layered aleurone was located in the lateral and ventral positions of endosperm. Our results provide in detail the dynamic changes in mitotic divisions, cellularization, cell differentiation, storage product accumulation, and programmed cell death that occur during rice endosperm development.
Rice caryopsis as one of the most important food sources for humans has a complex structure that is composed of maternal tissues including the pericarp and testa and filial tissues including the endosperm and embryo. Although rice caryopsis studies have been conducted previously, a systematic characterization throughout the entire developmental process is still lacking. In this study, detailed morphological examinations of caryopses were made during the entire 30-day developmental process. We observed some rapid changes in cell differentiation events and cataloged how cellular degeneration processes occurred in maternal tissues. The differentiations of tube cells and cross cells were achieved by 9 days after pollination (DAP). In the testa, the outer integument was degenerated by 3 DAP, while the outer layer of the inner integument degenerated by 7 DAP. In the nucellus, all tissues with the exception of the nucellar projection and the nucellar epidermis degenerated in the first 5 DAP. By 21 DAP, all maternal tissues, including vascular bundles, the nucellar projection and the nucellar epidermal cells were degenerated. In summary, this study provides a complete atlas of the dynamic changes in cell differentiation and degeneration for individual maternal cell layers of rice caryopsis.
The physiological role of plant mitochondrial glutathione peroxidases is scarcely known. This study attempted to elucidate the role of a rice mitochondrial isoform (GPX1) in photosynthesis under normal growth and salinity conditions. GPX1 knockdown rice lines (GPX1s) were tested in absence and presence of 100 mM NaCl for 6 d. Growth reduction of GPX1s line under non-stressful conditions, compared with non-transformed (NT) plants occurred in parallel to increased H2O2 and decreased GSH contents. These changes occurred concurrently with photosynthesis impairment, particularly in Calvin cycle's reactions, since photochemical efficiency did not change. Thus, GPX1 silencing and downstream molecular/metabolic changes modulated photosynthesis differentially. In contrast, salinity induced reduction in both phases of photosynthesis, which were more impaired in silenced plants. These changes were associated with root morphology alterations but not shoot growth. Both studied lines displayed increased GPX activity but H2O2 content did not change in response to salinity. Transformed plants exhibited lower photorespiration, water use efficiency and root growth, indicating that GPX1 could be important to salt tolerance. Growth reduction of GPX1s line might be related to photosynthesis impairment, which in turn could have involved a cross talk mechanism between mitochondria and chloroplast originated from redox changes due to GPX1 deficiency.
As a ubiquitous reaction, glucosylation controls the bioactivity of cytokinins in plant growth and development. Here we show that genetic manipulation of zeatin-O-glucosylation regulates the formation of important agronomic traits in rice by manipulating the expression of OscZOG1 gene, encoding a putative zeatin O-glucosyltransferase. We found that OscZOG1 was preferentially expressed in shoot and root meristematic tissues and nascent organs. The growth of lateral roots was stimulated in the overexpression lines, but inhibited in RNA interference lines. In shoots, knockdown of OscZOG1 expression by RNA interference significantly improved tillering, panicle branching, grain number per panicle and seed size, which are important agronomic traits for grain yield. In contrast, constitutive expression of OscZOG1 leads to negative effects on the formation of the grain-yielding traits with a marked increase in the accumulation levels of cis-zeatin O-glucoside (cZOG) in the transgenic rice plants. In this study, our findings demonstrate the feasibility of improving the critical yield-determinant agronomic traits, including tiller number, panicle branches, total grain number per panicle and grain weight by downregulating the expression level of OscZOG1. Our results suggest that modulating the levels of cytokinin glucosylation can function as a fine-tuning switch in regulating the formation of agronomic traits in rice.
A better understanding of shade avoidance syndrome (SAS) is an urgent need because of its effect on energy reallocation. Leverage-related mechanism in crops is of potential economic interest for agricultural applications. Here we report the SAS phenotype at tissue level rice seedlings. Tissue-specific RNA-sequencing indicates auxin plays different roles between coleoptile and the first leaf. Phenotypes of wild type treated by gibberellin and brassinosteroid biosynthesis inhibitors and of related mutants suggest these two hormones positively regulate SAS. Our work reveals the diversity of hormone responses in different organs and different species in shade conditions.
OsNRT1.1a is a low-affinity nitrate (NO3−) transporter gene. In this study, another mRNA splicing product, OsNRT1.1b, putatively encoding a protein with six transmembrane domains, was identified based on the rice genomic database and bioinformatics analysis. OsNRT1.1a/OsNRT1.1b expression in Xenopus oocytes showed OsNRT1.1a-expressing oocytes accumulated 15N levels to about half as compared to OsNRT1.1b-expressing oocytes. The electrophysiological recording of OsNRT1.1b-expressing oocytes treated with 0.25 mM NO3− confirmed 15N accumulation data. More functional assays were performed to examine the function of OsNRT1.1b in rice. The expression of both OsNRT1.1a and OsNRT1.1b was abundant in roots and downregulated by nitrogen (N) deficiency. The shoot biomass of transgenic rice plants with OsNRT1.1a or OsNRT1.1b overexpression increased under various N supplies under hydroponic conditions compared to wild-type (WT). The OsNRT1.1a overexpression lines showed increased plant N accumulation compared to the WT in 1.25 mM NH4NO3 and 2.5 mM NO3– or NH4+ treatments, but not in 0.125 mM NH4NO3. However, OsNRT1.1b overexpression lines increased total N accumulation in all N treatments, including 0.125 mM NH4NO3, suggesting that under low N condition, OsNRT1.1b would accumulate more N in plants and improve rice growth, but also that OsNRT1.1a had no such function in rice plants.
Jasmonic acid (JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase (JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate (MeJA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene, OsJMT1, whose encoding protein was localized in the cytosol, we found that the recombinant OsJMT1 protein catalyzed JA to MeJA. OsJMT1 is up-regulated in response to infestation with the brown planthopper (BPH; Nilaparvata lugens). Plants in which OsJMT1 had been overexpressed (oe-JMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased MeJA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine (JA-Ile). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs, probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H2O2 and MeJA in oe-JMT plants. These results indicate that OsJMT1, by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice.
Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull-like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1-green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes.
Domain of unknown function 1644 (DUF1644) is a highly conserved amino acid sequence motif present only in plants. Analysis of expression data of the family of DUF1644-containing genes indicated that they may regulate responses to abiotic stress in rice. Here we present our discovery of the role of OsSIDP366, a member of the DUF1644 gene family, in response to drought and salinity stresses in rice. Transgenic rice plants overexpressing OsSIDP366 showed enhanced drought and salinity tolerance and reduced water loss as compared to that in the control, whereas plants with downregulated OsSIDP366 expression levels using RNA interference (RNAi) were more sensitive to salinity and drought treatments. The sensitivity to abscisic acid (ABA) treatment was not changed in OsSIDP366-overexpressing plants, and OsSIDP366 expression was not affected in ABA-deficient mutants. Subcellular localization analysis revealed that OsSIDP366 is presented in the cytoplasmic foci that colocalized with protein markers for both processing bodies (PBs) and stress granules (SGs) in rice protoplasts. Digital gene expression (DGE) profile analysis indicated that stress-related genes such as SNAC1, OsHAK5 and PRs were upregulated in OsSIDP366-overexpressing plants. These results suggest that OsSIDP366 may function as a regulator of the PBs/SGs and positively regulate salt and drought resistance in rice.
Interspecific hybridization is a driving force in evolution and speciation of higher plants. Interspecific hybridization often induces immediate and saltational changes in gene expression, a phenomenon collectively termed “transcriptome shock”. Although transcriptome shock has been reported in various plant and animal taxa, the extent and pattern of shock-induced expression changes are often highly idiosyncratic, and hence entails additional investigations. Here, we produced a set of interspecific F1 triploid hybrid plants between Oryza sativa, ssp. japonica (2n = 2x = 24, genome AA) and the tetraploid form of O. punctata (2n = 4x = 48, genome, BBCC), and conducted RNA-seq transcriptome profiling of the hybrids and their exact parental plants. We analyzed both homeolog expression bias and overall gene expression level difference in the hybrids relative to the in silico “hybrids” (parental mixtures). We found that approximately 16% (2,541) of the 16,112 expressed genes in leaf tissue of the F1 hybrids showed nonadditive expression, which were specifically enriched in photosynthesis-related pathways. Interestingly, changes in the maternal homeolog expression, including non-stochastic silencing, were the major causes for altered homeolog expression partitioning in the F1 hybrids. Our findings have provided further insights into the transcriptome response to interspecific hybridization and heterosis.
Wu Y, Sun Y, Wang X, Lin X, Sun S, Shen K, Wang J, Jiang T, Zhong S, Xu C, Liu B (2016) Transcriptome shock in an interspecific F1 triploid hybrid of Oryza revealed by RNA sequencing. J Integr Plant Biol 58: 150–164 doi: 10.1111/jipb.12357
Kim HB, Cho JI, Ryoo N, Shin DH, Park YI, Hwang Ys, Lee SK, An G, Jeon JS (2016) Role of rice cytosolic hexokinase OsHXK7 in sugar signaling and metabolism. J Integr Plant Biol 58: 127–135 doi: 10.1111/jipb.12366
A premature senescence and death 128 (psd128) mutant was isolated from an ethyl methane sulfonate-induced rice IR64 mutant bank. The premature senescence phenotype appeared at the six-leaf stage and the plant died at the early heading stage. psd128 exhibited impaired chloroplast development with significantly reduced photosynthetic ability, chlorophyll and carotenoid contents, root vigor, soluble protein content and increased malonaldehyde content. Furthermore, the expression of senescence-related genes was significantly altered in psd128. The mutant trait was controlled by a single recessive nuclear gene. Using map-based strategy, the mutation Oryza sativa cell division cycle 48 (OsCDC48) was isolated and predicted to encode a putative AAA-type ATPase with 809 amino-acid residuals. A single base substitution at position C2347T in psd128 resulted in a premature stop codon. Functional complementation could rescue the mutant phenotype. In addition, RNA interference resulted in the premature senescence and death phenotype. OsCDC48 was expressed constitutively in the root, stem, leaf and panicle. Subcellular analysis indicated that OsCDC48:YFP fusion proteins were located both in the cytoplasm and nucleus. OsCDC48 was highly conserved with more than 90% identity in the protein levels among plant species. Our results indicated that the impaired function of OsCDC48 was responsible for the premature senescence and death phenotype.
Huang QN, Shi YF, Zhang XB, Song LX, Feng BH, Wang HM, Xu X, Li XH, Guo D, Wu JL (2016) Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice. J Integr Plant Biol 58: 12–28 doi: 10.1111/jipb.12372
Fan X, Wu J, Chen T, Tie W, Chen H, Zhou F, Lin Y (2015) Loss-of-function mutation of rice SLAC7 decreases chloroplast stability and induces a photoprotection mechanism in rice. J Integr Plant Biol 57: 1063–1077 doi: 10.1111/jipb.12350
DNA markers play important roles in plant breeding and genetics. The Insertion/Deletion (InDel) marker is one kind of co-dominant DNA markers widely used due to its low cost and high precision. However, the canonical way of searching for InDel markers is time-consuming and labor-intensive. We developed an end-to-end computational solution (InDel Markers Development Platform, IMDP) to identify genome-wide InDel markers under a graphic pipeline environment. IMDP constitutes assembled genome sequences alignment pipeline (AGA-pipe) and next-generation re-sequencing data mapping pipeline (NGS-pipe). With AGA-pipe we are able to identify 12,944 markers between the genome of rice cultivars Nipponbare and 93-11. Using NGS-pipe, we reported 34,794 InDels from re-sequencing data of rice cultivars Wu-Yun-Geng7 and Guang-Lu-Ai4. Combining AGA-pipe and NGS-pipe, we developed 205,659 InDels in eight japonica and nine indica cultivars and 2,681 InDels showed a subgroup-specific pattern. Polymerase chain reaction (PCR) analysis of subgroup-specific markers indicated that the precision reached 90% (86 of 95). Finally, to make them available to the public, we have integrated the InDels/markers information into a website (Rice InDel Marker Database, RIMD, http://202.120.45.71/). The application of IMDP in rice will facilitate efficiency for development of genome-wide InDel markers, in addition it can be used in other species with reference genome sequences and NGS data.
Lu Y, Cui X, Li R, Huang P, Zong J, Yao D, Li G, Zhang D, Yuan Z (2015) Development of genome-wide insertion/deletion markers in rice based on graphic pipeline platform. J Integr Plant Biol 57: 980–991 doi: 10.1111/jipb.12354
Phosphorus (P) is a major plant nutrient and developing crops with higher P-use efficiency is an important breeding goal. In this context we have conducted a comparative study of irrigated and rainfed rice varieties to assess genotypic differences in colonization with arbuscular mycorrhizal (AM) fungi and expression of different P transporter genes. Plants were grown in three different soil samples from a rice farm in the Philippines. The data show that AM symbiosis in all varieties was established after 4 weeks of growth under aerobic conditions and that, in soil derived from a rice paddy, natural AM populations recovered within 6 weeks. The analysis of AM marker genes (AM1, AM3, AM14) and P transporter genes for the direct Pi uptake (PT2, PT6) and AM-mediated pathway (PT11, PT13) were largely in agreement with the observed root AM colonization providing a useful tool for diversity studies. Interestingly, delayed AM colonization was observed in the aus-type rice varieties which might be due to their different root structure and might confer an advantage for weed competition in the field. The data further showed that P-starvation induced root growth and expression of the high-affinity P transporter PT6 was highest in the irrigated variety IR66 which also maintained grain yield under P-deficient field conditions.
Jeong K, Mattes N, Catausan S, Chin JH, Paszkowski U, Heuer S (2015) Genetic diversity for mycorrhizal symbiosis and phosphate transporters in rice. J Integr Plant Biol 57: 969–979 doi: 10.1111/jipb.12435