]*>","")" /> Effects of Salt Stress on Carbohydrate Metabolism in Desert Soil Alga Microcoleus vaginatus Gom.

J Integr Plant Biol ›› 2006, Vol. 48 ›› Issue (8): -.DOI: 10.1111/j.1744-7909.2006.00291.x

• •    

Effects of Salt Stress on Carbohydrate Metabolism in Desert Soil Alga Microcoleus vaginatus Gom.

Lan-Zhou Chen, Dun-Hai Li, Li-Rong Song, Chun-Xiang Hu, Gao-Hong Wang and Yong-Ding Liu   

  • 发布日期:2006-08-01

Effects of Salt Stress on Carbohydrate Metabolism in Desert Soil Alga Microcoleus vaginatus Gom.

Lan-Zhou Chen, Dun-Hai Li, Li-Rong Song, Chun-Xiang Hu, Gao-Hong Wang and Yong-Ding Liu   

  • Published:2006-08-01

Abstract: The effects of salt stress on carbohydrate metabolism in Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crusts, were investigated in the present study. Extracellular total carbohydrates and exopolysaccharides (EPS) in the culture medium produced by M. vaginatus increased significantly during the growth phase and reached a maximum during the stationary phase. The production of extracellular carbohydrates also significantly increased under higher salt concentrations, which was attributed to an increase in low molecular weight carbohydrates. In the presence of NaCl, the production of cellular total carbohydrates decreased and photosynthetic activity was impaired, whereas cellular reducing sugars, water-soluble sugars and sucrose content and sucrose phosphate synthase activity increased, reaching a maximum in the presence of 200 mmol/L NaCl. These parameters were restored to original levels when the algae were transferred to a non-saline medium. Sodium and K+ concentrations of stressed cells decreased significantly and H+-ATPase activity increased after the addition of exogenous sucrose or EPS. The results suggest that EPS and sucrose are synthesized to maintain the cellular osmotic equilibrium between the intra- and extracellular environment, thus protecting algal cells from osmotic damage, which was attributed to the selective exclusion of cellular Na+ and K+ by H+-ATPase.(Author for correspondence.Tel(Fax): +86 (0) 27 6878 0036; E-mail:liuyd@ihb.ac.cn )

Key words: carbohydrate metabolism, desert cyanobacteria, exopolysaccharides (EPS), osmotic equilibrium, salt stress.

[an error occurred while processing this directive]