通知公告
    [an error occurred while processing this directive]
推荐文章
    J Integr Plant Biol
    Please wait a minute...
    选择: 显示/隐藏图片
    1. Circadian clock in plants: Linking timing to fitness
    Xiaodong Xu, Li Yuan, Xin Yang, Xiao Zhang, Lei Wang and Qiguang Xie
    J Integr Plant Biol    2022, 64 (4): 792-811.   DOI: 10.1111/jipb.13230
    发布日期: 2022-01-28

    预出版日期: 2022-01-28
    Endogenous circadian clock integrates cyclic signals of environment and daily and seasonal behaviors of organisms to achieve spatiotemporal synchronization, which greatly improves genetic diversity and fitness of species. This review addresses recent studies on the plant circadian system in the field of chronobiology, covering topics on molecular mechanisms, internal and external Zeitgebers, and hierarchical regulation of physiological outputs. The architecture of the circadian clock involves the autoregulatory transcriptional feedback loops, post-translational modifications of core oscillators, and epigenetic modifications of DNA and histones. Here, light, temperature, humidity, and internal elemental nutrients are summarized to illustrate the sensitivity of the circadian clock to timing cues. In addition, the circadian clock runs cell-autonomously, driving independent circadian rhythms in various tissues. The core oscillators responds to each other with biochemical factors including calcium ions, mineral nutrients, photosynthetic products, and hormones. We describe clock components sequentially expressed during a 24-h day that regulate rhythmic growth, aging, immune response, and resistance to biotic and abiotic stresses. Notably, more data have suggested the circadian clock links chrono-culture to key agronomic traits in crops.
    2. Suppression of DRR1 results in the accumulation of insoluble ubiquitinated proteins, which impairs drought stress tolerance
    Seong Gwan Yu, Na Hyun Cho, Jong Hum Kim, Tae Rin Oh and Woo Taek Kim
    J Integr Plant Biol    2021, 63 (3): 431-437.   DOI: 10.1111/jipb.13014

    预出版日期: 2020-09-10
    摘要818)      英文版    收藏
    Drought stress has detrimental effects on plants. Although the abscisic acid (ABA)‐mediated drought response is well established, defensive mechanisms to cope with dehydration‐induced proteotoxicity have been rarely studied. DRR1 was identified as an Arabidopsis drought‐induced gene encoding an ER‐localized RING‐type E3 Ub ligase. Suppression of DRR1 markedly reduced tolerance to drought and proteotoxic stress without altering ABA‐mediated germination and stomatal movement. Proteotoxicity‐ and dehydration‐induced insoluble ubiquitinated protein accumulation was more obvious in DRR1 loss‐of‐function plants than in wild‐type plants. These results suggest that DRR1 is involved in an ABA‐independent drought stress response possibly through the mitigation of dehydration‐induced proteotoxic stress.
    3. Histone deacetylase HDA710 controls salt tolerance by regulating ABA signaling in rice
    Farhan Ullah, Qiutao Xu, Yu Zhao and Dao‐Xiu Zhou
    J Integr Plant Biol    2021, 63 (3): 451-467.   DOI: 10.1111/jipb.13042
    发布日期: 2020-12-02

    预出版日期: 2020-12-02
    摘要644)      英文版    收藏
    Plants have evolved numerous mechanisms that assist them in withstanding environmental stresses. Histone deacetylases (HDACs) play crucial roles in plant stress responses; however, their regulatory mechanisms remain poorly understood. Here, we explored the function of HDA710/OsHDAC2, a member of the HDAC RPD3/HDA1 family, in stress tolerance in rice (Oryza sativa). We established that HDA710 localizes to both the nucleus and cytoplasm and is involved in regulating the acetylation of histone H3 and H4, specifically targeting H4K5 and H4K16 under normal conditions. HDA710 transcript accumulation levels were strongly induced by abiotic stresses including drought and salinity, as well as by the phytohormones jasmonic acid (JA) and abscisic acid (ABA). hda710 knockout mutant plants showed enhanced salinity tolerance and reduced ABA sensitivity, whereas transgenic plants overexpressing HDA710 displayed the opposite phenotypes. Moreover, ABA‐ and salt‐stress‐responsive genes, such as OsLEA3, OsABI5, OsbZIP72, and OsNHX1, were upregulated in hda710 compared with wild‐type plants. These expression differences corresponded with higher levels of histone H4 acetylation in gene promoter regions in hda710 compared with the wild type under ABA and salt‐stress treatment. Collectively, these results suggest that HDA710 is involved in regulating ABA‐ and salt‐stress‐responsive genes by altering H4 acetylation levels in their promoters.
    4. Arabidopsis U‐box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptor‐like protein kinases LRR1 and KIN7
    Xuexue Chen, Tingting Wang, Amin Ur Rehman, Yu Wang, Junsheng Qi, Zhen Li, Chunpeng Song, Baoshan Wang, Shuhua Yang and Zhizhong Gong
    J Integr Plant Biol    2021, 63 (3): 494-509.   DOI: 10.1111/jipb.13058
    发布日期: 2020-12-21

    预出版日期: 2020-12-21
    摘要687)      英文版    收藏
    Both plant receptor‐like protein kinases (RLKs) and ubiquitin‐mediated proteolysis play crucial roles in plant responses to drought stress. However, the mechanism by which E3 ubiquitin ligases modulate RLKs is poorly understood. In this study, we showed that Arabidopsis PLANT U‐BOX PROTEIN 11 (PUB11), an E3 ubiquitin ligase, negatively regulates abscisic acid (ABA)‐mediated drought responses. PUB11 interacts with and ubiquitinates two receptor‐like protein kinases, LEUCINE RICH REPEAT PROTEIN 1 (LRR1) and KINASE 7 (KIN7), and mediates their degradation during plant responses to drought stress in vitro and in vivo. pub11 mutants were more tolerant, whereas lrr1 and kin7 mutants were more sensitive, to drought stress than the wild type. Genetic analyses show that the pub11 lrr1 kin7 triple mutant exhibited similar drought sensitivity as the lrr1 kin7 double mutant, placing PUB11 upstream of the two RLKs. Abscisic acid and drought treatment promoted the accumulation of PUB11, which likely accelerates LRR1 and KIN7 degradation. Together, our results reveal that PUB11 negatively regulates plant responses to drought stress by destabilizing the LRR1 and KIN7 RLKs.
    5. Receptor‐like kinases MDS1 and MDS2 promote SUMM2‐mediated immunity
    Yanan Liu, Xionghui Zhong, Zhibin Zhang, Jiameng Lan, Xingchuan Huang, Hainan Tian, Xin Li and Yuelin Zhang
    J Integr Plant Biol    2021, 63 (2): 277-282.   DOI: 10.1111/jipb.12978
    发布日期: 2020-06-04

    预出版日期: 2020-06-04
    摘要521)      英文版    收藏
    Disruption of the MEKK1‐MKK1/MKK2‐MPK4 kinase cascade leads to activation of immunity mediated by the nucleotide‐binding leucine‐rich repeat (NLR) immune receptor SUMM2, which monitors the phosphorylation status of CRCK3. Here we report that two receptor‐like kinases (RLKs), MDS1, and MDS2, function redundantly to promote SUMM2‐mediated immunity. Activation of SUMM2‐mediated immunity is dependent on MDS1, and to a less extent on MDS2. MDS1 associates with CRCK3 in planta and can phosphorylate CRCK3 in vitro, suggesting that it may target CRCK3 to positively regulate SUMM2‐mediated signaling. Our finding highlights a new defense mechanism where RLKs promote NLR‐mediated immunity.
    6. Phyllosphere microbiota: Community dynamics and its interaction with plant hosts
    Tianyu Gong and Xiu‐Fang Xin
    J Integr Plant Biol    2021, 63 (2): 297-304.   DOI: 10.1111/jipb.13060
    发布日期: 2020-12-23

    预出版日期: 2020-12-23
    摘要605)      英文版    收藏
    Plants are colonized by various microorganisms in natural environments. While many studies have demonstrated key roles of the rhizosphere microbiota in regulating biological processes such as nutrient acquisition and resistance against abiotic and biotic challenges, less is known about the role of the phyllosphere microbiota and how it is established and maintained. This review provides an update on current understanding of phyllosphere community assembly and the mechanisms by which plants and microbes establish the phyllosphere microbiota for plant health.
    7. Arabidopsis E3 ligase KEG associates with and ubiquitinates MKK4 and MKK5 to regulate plant immunity
    Chenyang Gao, Pengwei Sun, Wei Wang and Dingzhong Tang
    J Integr Plant Biol    2021, 63 (2): 327-339.   DOI: 10.1111/jipb.13007
    发布日期: 2020-09-02

    预出版日期: 2020-09-02
    摘要684)      英文版    收藏
    Mitogen‐activated protein kinase (MAPK) cascades are highly conserved signaling modules that regulate plant immune responses. The Arabidopsis thaliana Raf‐like MAPK kinase kinase ENHANCED DISEASE RESISTANCE1 (EDR1) is a key negative regulator of plant immunity that affects the protein levels of MKK4 and MKK5, two important MAPK cascade members, but the underlying mechanism is poorly understood. Here, genome‐wide phosphorylation analysis demonstrated that the E3 ligase KEEP ON GOING (KEG) is phosphorylated in the edr1 mutant but not the wild type, suggesting that EDR1 negatively affects KEG phosphorylation. The identified phosphorylation sites in KEG appear to be important for its accumulation. The keg‐4 mutant, a previously identified edr1 suppressor, enhances susceptibility to the powdery mildew pathogen Golovinomyces cichoracearum. In addition, MKK4 and MKK5 protein levels are reduced in the keg‐4 mutant. Furthermore, we demonstrate that MKK4 and MKK5 associate with full‐length KEG, but not with truncated KEG‐RK or KEG‐RKA, and that KEG ubiquitinates and mediates the degradation of MKK4 and MKK5. Taken together, these results indicate that MKK4 and MKK5 protein levels are regulated by KEG via ubiquitination, uncovering a mechanism by which plants fine‐tune immune responses by regulating the homeostasis of key MAPK cascade members via ubiquitination and degradation.
    8. Genome editing for plant research and crop improvement
    Xiangqiang Zhan, Yuming Lu, Jian-Kang Zhu and Jose Ramon Botella
    J Integr Plant Biol    2021, 63 (1): 3-33.   DOI: 10.1111/jipb.13063
    发布日期: 2020-12-24

    预出版日期: 2020-12-24
    摘要752)      英文版    收藏
    The advent of clustered regularly interspaced short palindromic repeat (CRISPR) has had a profound impact on plant biology, and crop improvement. In this review, we summarize the state‐of‐the‐art development of CRISPR technologies and their applications in plants, from the initial introduction of random small indel (insertion or deletion) mutations at target genomic loci to precision editing such as base editing, prime editing and gene targeting. We describe advances in the use of class 2, types II, V, and VI systems for gene disruption as well as for precise sequence alterations, gene transcription, and epigenome control.
    9. Protein kinases in plant responses to drought, salt, and cold stress
    Xuexue Chen, Yanglin Ding, Yongqing Yang, Chunpeng Song, Baoshan Wang, Shuhua Yang, Yan Guo and Zhizhong Gong
    J Integr Plant Biol    2021, 63 (1): 53-78.   DOI: 10.1111/jipb.13061
    发布日期: 2021-01-05

    预出版日期: 2021-01-05
    摘要1156)      英文版    收藏
    Protein kinases are major players in various signal transduction pathways. Understanding the molecular mechanisms behind plant responses to biotic and abiotic stresses has become critical for developing and breeding climate‐resilient crops. In this review, we summarize recent progress on understanding plant drought, salt, and cold stress responses, with a focus on signal perception and transduction by different protein kinases, especially sucrose nonfermenting1 (SNF1)‐related protein kinases (SnRKs), mitogen‐activated protein kinase (MAPK) cascades, calcium‐dependent protein kinases (CDPKs/CPKs), and receptor‐like kinases (RLKs). We also discuss future challenges in these research fields.
    10. The nodulation and nyctinastic leaf movement is orchestrated by clock gene LHY in Medicago truncatula
    Yiming Kong, Lu Han, Xiu Liu, Hongfeng Wang, Lizhu Wen, Xiaolin Yu, Xiaodong Xu, Fanjiang Kong, Chunxiang Fu, Kirankumar S. Mysore, Jiangqi Wen and Chuanen Zhou
    J Integr Plant Biol    2020, 62 (12): 1880-1895.   DOI: 10.1111/jipb.12999
    发布日期: 2020-07-30

    预出版日期: 2020-07-30

    As sessile organisms, plants perceive, respond, and adapt to the environmental changes for optimal growth and survival. The plant growth and fitness are enhanced by circadian clocks through coordination of numerous biological events. In legume species, nitrogen‐fixing root nodules were developed as the plant organs specialized for symbiotic transfer of nitrogen between microsymbiont and host. Here, we report that the endogenous circadian rhythm in nodules is regulated by MtLHY in legume species Medicago truncatula. Loss of function of MtLHY leads to a reduction in the number of nodules formed, resulting in a diminished ability to assimilate nitrogen. The operation of the 24‐h rhythm in shoot is further influenced by the availability of nitrogen produced by the nodules, leading to the irregulated nyctinastic leaf movement and reduced biomass in mtlhy mutants. These data shed new light on the roles of MtLHY in the orchestration of circadian oscillator in nodules and shoots, which provides a mechanistic link between nodulation, nitrogen assimilation, and clock function.

    第1页,共63页 共622条记录
    版权信息
    主管单位:中国科学技术协会
    主办单位:中国通信学会
    主  编:张 平
    副主编:陆建华 马建峰 杨 震
         杨晨阳 彭长根
    编辑部主任:易东山
    地  址:北京市丰台区成寿寺路11号
         邮电出版大厦8层
    邮政编码:100078
    电  话:010-81055468 81055480
            81055481 81055478
    电子邮件:xuebao@ptpress.com.cn
         txxb@bjxintong.com.cn
    国际标准刊号:ISSN 1000-436X
    国内统一刊号:CN 11-2102/TN
    友情链接
    访问统计
    总访问量
    今日访问
    在线人数
  
The OsWRKY72–OsAAT30/OsGSTU26 module mediates reactive oxygen species scavenging to drive heterosis for salt tolerance in hybrid rice
Hybrid rice (Oryza sativa) generally outperforms its inbred parents in yield and stress tolerance, a phenomenon termed heterosis, but the underlying mechanism is not completely understood. Here, we combined transcriptome. . .
DOI: 10.1111/jipb.13640
Potassium transporter OsHAK9 regulates seed germination under salt stress by preventing gibberellin degradation through mediating OsGA2ox7 in rice
Soil salinity has a major impact on rice seed germination, severely limiting rice production. Herein, a rice germination defective mutant under salt stress (gdss) was identified by using chemical mutagenesis. The GDSS ge. . .
DOI: 10.1111/jipb.13642
2024, Vol. 66 No. 1 
2023, Vol. 65 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2022, Vol. 64 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2021, Vol. 63 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2020, Vol. 62 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2019, Vol. 61 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2018, Vol. 60 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2017, Vol. 59 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2016, Vol. 58 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2015, Vol. 57 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2014, Vol. 56 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2013, Vol. 55 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2012, Vol. 54 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2011, Vol. 53 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2010, Vol. 52 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 4 No. 5 No. 3 No. 2 No. 1
2009, Vol. 51 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2008, Vol. 50 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2007, Vol. 49 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2006, Vol. 48 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2005, Vol. 47 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2004, Vol. 46 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2003, Vol. 45 No. 12  No. 11 No. Suppl. No. 10 No. 9 No. 8
No. 7 No. 6 No. 5 No. 4 No. 3 No. 2
No. 1
2002, Vol. 44 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2001, Vol. 43 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2000, Vol. 42 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1999, Vol. 41 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1998, Vol. 40 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1997, Vol. 39 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1996, Vol. 38 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1995, Vol. 37 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1994, Vol. 36 No. Suppl.  No. 12 No. 11 No. 10 No. 9 No. 8
No. 7 No. 6 No. 5 No. 4 No. 3 No. 2
No. 1
1993, Vol. 35 No. Suppl.  No. 12 No. 11 No. 10 No. 9 No. 8
No. 7 No. 6 No. 5 No. 4 No. 3 No. 2
No. 1
1992, Vol. 34 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1991, Vol. 33 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1990, Vol. 32 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1989, Vol. 31 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1988, Vol. 30 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1987, Vol. 29 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1986, Vol. 28 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1985, Vol. 27 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1984, Vol. 26 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1983, Vol. 25 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1982, Vol. 24 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1981, Vol. 23 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1980, Vol. 22 No. 4  No. 3 No. 2 No. 1
1979, Vol. 21 No. 4  No. 3 No. 2 No. 1
1978, Vol. 20 No. 4  No. 3 No. 2 No. 1
1977, Vol. 19 No. 4  No. 3 No. 2 No. 1
1976, Vol. 18 No. 4  No. 3 No. 2 No. 1
1975, Vol. 17 No. 4  No. 3 No. 2 No. 1
1974, Vol. 16 No. 4  No. 3 No. 2 No. 1
1973, Vol. 15 No. 2  No. 1
1966, Vol. 14 No. 2  No. 1
1965, Vol. 13 No. 4  No. 3 No. 2 No. 1
1964, Vol. 12 No. 4  No. 3 No. 2 No. 1
1963, Vol. 11 No. 4  No. 3 No. 2 No. 1
1962, Vol. 10 No. 4  No. 3 No. 2 No. 1
1961, Vol. 9 No. 3 
1960, Vol. 9 No. 2  No. 1
1959, Vol. 8 No. 4  No. 3 No. 2 No. 1
1958, Vol. 7 No. 4  No. 3 No. 2 No. 1
1957, Vol. 6 No. 4  No. 3 No. 2 No. 1
1956, Vol. 5 No. 4  No. 3 No. 2 No. 1
1955, Vol. 4 No. 4  No. 3 No. 2 No. 1
1954, Vol. 3 No. 4  No. 3 No. 2 No. 1
1953, Vol. 2 No. 4  No. 3 No. 2 No. 1
1952, Vol. 1 No. 2  No. 1
J Integr Plant Biol. 2019 Vol. 61 (12): 1201-1205 doi: 10.1111/jipb.12774
摘要 1542)      PDF (10030KB)(713)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (3): 299-313 doi: 10.1111/jipb.12843
摘要 767)      PDF (3378KB)(646)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (5): 563-580 doi: 10.1111/jipb.12901
摘要 882)      PDF (1387KB)(619)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (3): 258-263 doi: 10.1111/jipb.12918
摘要 403)      PDF (764KB)(501)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (1): 25-54 doi: 10.1111/jipb.12899
摘要 1854)      PDF (1470KB)(494)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (3): 287-298 doi: 10.1111/jipb.12804
摘要 551)      PDF (2837KB)(493)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (5): 668-689 doi: 10.1111/jipb.12933
摘要 471)      PDF (3811KB)(487)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (2): 165-180 doi: 10.1111/jipb.12784
摘要 1271)      PDF (736KB)(481)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (1): 148-159 doi: 10.1111/jipb.12879
摘要 1257)      PDF (1862KB)(443)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (6): 761-776 doi: 10.1111/jipb.12859
摘要 397)      PDF (3143KB)(427)       收藏
相关文章 | 多维度评价
J Integr Plant Biol
Developmental Mechanism and Distribution Pattern of Stomatal Clusters in Begonia peltatifolia
TANG Min, HU Yu Xi, LIN Jin Xing, JIN Xiao Bai
J Integr Plant Biol. 2002 Vol. 44 (4): 384-390
摘要 9769)      PDF (3136KB)(370)       收藏
相关文章 | 多维度评价
Contributions of Chinese Botanists to Plant Tissue Culture in the 20th Century
CHU Chih-Ching
J Integr Plant Biol. 2002 Vol. 44 (9): 1075-1084
摘要 9444)      PDF (4691KB)(255)       收藏
相关文章 | 多维度评价
The Distribution of Stomata and Photosynthetic Pathway in Leaves
Lin Zhi-fang, Li Shuang-shun and Lin Gui-zhu
J Integr Plant Biol. 1986 Vol. 28 (4): null-null
摘要 8997)      PDF (421KB)(300)       收藏
相关文章 | 多维度评价
Plant terpenoids: Biosynthesis and ecological functions
Ai-Xia Cheng, Yong-Gen Lou, Ying-Bo Mao, Shan Lu, Ling-Jian Wang and Xiao-Ya Chen
J Integr Plant Biol. 2007 Vol. 49 (2): 179-186 doi: 10.1111/j.1744-7909.2007.00395.x
摘要 7445)            收藏
相关文章 | 多维度评价
The plant vascular system: Evolution, development and functions
William J. Lucas, Andrew Groover, Raffael Lichtenberger, Kaori Furuta, Shri-Ram Yadav, Ykä Helariutta, Xin-Qiang He, Hiroo Fukuda, Julie Kang, Siobhan M. Brady, John W. Patrick, John Sperry, Akiko Yoshida, Ana-Flor López-Millón, Michael A. Grusak, and Pradeep Kachroo
J Integr Plant Biol. 2013 Vol. 55 (4): 294-388 doi: 10.1111/jipb.12041
摘要 7330)            收藏
相关文章 | 多维度评价
Rice Research: Past, Present and Future
Hong Ma, Kang Chong and Xing-Wang Deng
J Integr Plant Biol. 2007 Vol. 49 (6): 729-730 doi: 10.1111/j.1744-7909.2007.00515.x
摘要 6905)            收藏
相关文章 | 多维度评价
Анатомическое исследование природного древесного угля ,полученного врайоне Чанбайщана
Гу он-гэн
J Integr Plant Biol. 1957 Vol. 6 (2): null-null
摘要 6772)      PDF (178KB)(53)       收藏
相关文章 | 多维度评价
The Structure Anomalous Secondary Growth of Stem in Gnetum montanum
Gao Xin-zeng, Chen Yao-tang, Deng Yue-fen and Li Rong-ao
J Integr Plant Biol. 1984 Vol. 26 (6): null-null
摘要 6212)      PDF (2003KB)(514)       收藏
相关文章 | 多维度评价
Advances in the Studies on Water Uptake by Plant Roots
ZHAO Chang-Xing, DENG Xi-Ping, ZHANG Sui-Qi, YE Qing, Ernst STEUDLE, SHAN Lun
J Integr Plant Biol. 2004 Vol. 46 (5): 505-514
摘要 5755)      PDF (1536KB)(211)       收藏
相关文章 | 多维度评价
Isolation of Rice EPSP Synthase cDNA and Its Sequence Analysis and Copy Number Determination
XU Jun-Wang, WEI Xiao-Li, LI Xu-Gang, CHEN Lei, FENG De-Jiang and ZHU Zhen
J Integr Plant Biol. 2002 Vol. 44 (2): 188-192
摘要 5559)      PDF (3192KB)(183)       收藏
相关文章 | 多维度评价
Phototropins and Their LOV Domains: Versatile Plant Blue-Light Receptors
Winslow R. Briggs, Tong-Seung Tseng, Hae-Young Cho, Trevor E. Swartz, Stuart Sullivan, Roberto A. Bogomolni, Eirini Kaiserli and John M. Christie
J Integr Plant Biol. 2007 Vol. 49 (1): 4 -10 doi: 10.1111/j.1744-7909.2006.00406.x
摘要 ( 3251 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(793)
Functions and Application of the AP2/ERF Transcription Factor Family in Crop Improvement
Zhao-Shi Xu, Ming Chen, Lian-Cheng Li and You-Zhi Ma
J Integr Plant Biol. 2011 Vol. 53 (7): 570 -585 doi: 10.1111/j.1744-7909.2011.01062.x
摘要 ( 2695 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(403)
Global Change Effects on Plant Chemical Defenses against Insect Herbivores
M. Gabriela Bidart-Bouzat and Adebobola Imeh-Nathaniel
J Integr Plant Biol. 2008 Vol. 50 (11): 1339 -1354 doi: 10.1111/j.1744-7909.2008.00751.x
摘要 ( 2949 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(374)
Molecular analysis of legume nodule development and autoregulation
Brett J. Ferguson, Arief Indrasumunar, Satomi Hayashi, Meng-Han Lin, Yu-Hsiang Lin, Dugald E. Reid and Peter M. Gresshoff
J Integr Plant Biol. 2010 Vol. 52 (1): 61 -76 doi: 10.1111/j.1744-7909.2010.00899.x
摘要 ( 2716 )      PDF (824KB) ( 164 )       收藏
相关文章 | 多维度评价
被引次数: Baidu(364)
Reactive Oxygen Species during Plant-microorganism Early Interactions
Amrit K Nanda, Emilie Andrio, Daniel Marino, Nicolas Pauly, and Christophe Dunand
J Integr Plant Biol. 2010 Vol. 52 (2): 195 -204 doi: 10.1111/j.1744-7909.2010.00933.x
摘要 ( 2531 )      PDF (409KB) ( 93 )       收藏
相关文章 | 多维度评价
被引次数: Baidu(354)
Thermal Hardening: A New Seed Vigor Enhancement Tool in Rice
Muhammad FAROOQ, S. M. A. BASRA, Nazir AHMAD and K. HAFEEZ
J Integr Plant Biol. 2005 Vol. 47 (2): 187 -193 doi: 10.1111/j.1744-7909.2005.00031.x
摘要 ( 3831 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(343)
How plants cope with cadmium: Staking all on metabolism and gene expression
Giovanni DalCorso, Silvia Farinati, Silvia Maistri and Antonella Furini
J Integr Plant Biol. 2008 Vol. 50 (10): 1268 -1280 doi: 10.1111/j.1744-7909.2008.00737.x
摘要 ( 3422 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(342)
The WRKY Gene Family in Rice (Oryza sativa)
Christian A. Ross, Yue Liu and Qingxi J. Shen
J Integr Plant Biol. 2007 Vol. 49 (6): 827 -842 doi: 10.1111/j.1744-7909.2007.00504.x
摘要 ( 4701 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(339)
Abscisic Acid-mediated Epigenetic Processes in Plant Development and Stress Responses
Viswanathan Chinnusamy, Zhizhong Gong and Jian-Kang Zhu
J Integr Plant Biol. 2008 Vol. 50 (10): 1187 -1195 doi: 10.1111/j.1744-7909.2008.00727.x
摘要 ( 3217 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(336)
Metabolism and Long-distance Translocation of Cytokinins
Toru Kudo, Takatoshi Kiba and Hitoshi Sakakibara
J Integr Plant Biol. 2010 Vol. 52 (1): 53 -60 doi: 10.1111/j.1744-7909.2010.00898.x
摘要 ( 1909 )      PDF (327KB) ( 148 )       收藏
相关文章 | 多维度评价
被引次数: Baidu(335)
版权信息
主管单位:中国科学技术协会
主办单位:中国通信学会
主  编:张 平
副主编:陆建华 马建峰 杨 震
     杨晨阳 彭长根
编辑部主任:易东山
地  址:北京市丰台区成寿寺路11号
     邮电出版大厦8层
邮政编码:100078
电  话:010-81055468 81055480
        81055481 81055478
电子邮件:xuebao@ptpress.com.cn
     txxb@bjxintong.com.cn
国际标准刊号:ISSN 1000-436X
国内统一刊号:CN 11-2102/TN
友情链接
访问统计
总访问量
今日访问
在线人数
[an error occurred while processing this directive]