通知公告
    [an error occurred while processing this directive]
推荐文章
    J Integr Plant Biol
    Please wait a minute...
    选择: 显示/隐藏图片
    1. A synthetic biology approach for identifying de‐SUMOylation enzymes of substrates
    Junwen Huang, Junjie Huang, Jiayuan Wu, Mi Zhou, Siyi Luo, Jieming Jiang, Tongsheng Chen, Ling Shao, Jianbin Lai, Chengwei Yang
    J Integr Plant Biol    DOI: 10.1111/jipb.13838
    发布日期: 2025-01-21

    预出版日期: 2025-01-21
    摘要 ( 78 )       收藏
    2. More than flowering: CONSTANS plays multifaceted roles in plant development and stress responses
    Bin Yu, Yilong Hu, Xingliang Hou
    J Integr Plant Biol    2025, 67 (3): 425-439.   DOI: 10.1111/jipb.13798
    发布日期: 2024-10-28

    预出版日期: 2024-10-28
    摘要116)      英文版    收藏
    Plants have evolved a remarkable ability to sense and respond to changes in photoperiod, allowing adjustments to their growth and development based on seasonal and environmental cues. The floral transition is a pivotal stage in plant growth and development, signifying a shift from vegetative to reproductive growth. CONSTANS (CO), a central photoperiodic response factor conserved in various plants, mediates day-length signals to control the floral transition, although its mechanisms of action vary among plants with different day-length requirements. In addition, recent studies have uncovered roles for CO in organ development and stress responses. These pleiotropic roles in model plants and crops make CO a potentially fruitful target for molecular breeding aimed at modifying crop agronomic traits. This review systematically traces research on CO, from its discovery and functional studies to the exploration of its regulatory mechanisms and newly discovered functions, providing important insight into the roles of CO and laying a foundation for future research.
    3. In vivo haploid induction in cauliflower, kale, and broccoli
    Guixiang Wang, Mei Zong, Shuo Han, Hong Zhao, Mengmeng Duan, Xin Liu, Ning Guo, Fan Liu
    J Integr Plant Biol    2024, 66 (9): 1823-1826.   DOI: 10.1111/jipb.13730
    发布日期: 2024-07-03

    预出版日期: 2024-07-03
    摘要174)      英文版    收藏
    4. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits
    Shan Li, Yu Zhao, Pan Wu, Donald Grierson, Lei Gao
    J Integr Plant Biol    2024, 66 (9): 1831-1863.   DOI: 10.1111/jipb.13739
    发布日期: 2024-07-17

    预出版日期: 2024-07-17
    摘要159)      英文版    收藏
    Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
    5. Phase separation of S-RNase promotes self-incompatibility in Petunia hybrida
    Huayang Tian, Hongkui Zhang, Huaqiu Huang, Yu'e Zhang and Yongbiao Xue
    J Integr Plant Biol    2024, 66 (5): 986-1006.   DOI: 10.1111/jipb.13584
    发布日期: 2023-11-14

    预出版日期: 2023-11-14
    摘要268)      英文版    收藏
    Self-incompatibility (SI) is an intraspecific reproductive barrier widely present in angiosperms. The SI system with the broadest occurrence in angiosperms is based on an S-RNase linked to a cluster of multiple S-locus F-box (SLF) genes found in the Solanaceae, Plantaginaceae, Rosaceae, and Rutaceae. Recent studies reveal that non-self S-RNase is degraded by the Skip Cullin F-box (SCF)SLF-mediated ubiquitin–proteasome system in a collaborative manner in Petunia, but how self-RNase functions largely remains mysterious. Here, we show that S-RNases form S-RNase condensates (SRCs) in the self-pollen tube cytoplasm through phase separation and the disruption of SRC formation breaks SI in self-incompatible Petunia hybrida. We further find that the pistil SI factors of a small asparagine-rich protein HT-B and thioredoxin h together with a reduced state of the pollen tube all promote the expansion of SRCs, which then sequester several actin-binding proteins, including the actin polymerization factor PhABRACL, the actin polymerization activity of which is reduced by S-RNase in vitro. Meanwhile, we find that S-RNase variants lacking condensation ability fail to recruit PhABRACL and are unable to induce actin foci formation required for pollen tube growth inhibition. Taken together, our results demonstrate that phase separation of S-RNase promotes SI response in P. hybrida, revealing a new mode of S-RNase action.
    6. Maize gets an iron boost: Biofortification breakthrough holds promise to combat iron deficiency
    Sunil Kumar Sahu
    J Integr Plant Biol    2024, 66 (4): 635-637.   DOI: 10.1111/jipb.13623
    发布日期: 2024-02-13

    预出版日期: 2024-02-13
    摘要187)      英文版    收藏
    7. CRISPR/CasΦ2-mediated gene editing in wheat and rye
    Sanzeng Zhao, Xueying Han, Yachen Zhu, Yuwei Han, Huiyun Liu, Zhen Chen, Huifang Li, Dan Wang, Chaofan Tian, Yuting Yuan, Yajie Guo, Xiaomin Si, Daowen Wang and Xiang Ji
    J Integr Plant Biol    2024, 66 (4): 638-641.   DOI: 10.1111/jipb.13624
    发布日期: 2024-02-13

    预出版日期: 2024-02-13
    摘要204)      英文版    收藏
    8. Breeding exceptionally fragrant soybeans for soy milk with strong aroma
    Hongtao Xie, Minglei Song, Xuesong Cao, Qingfeng Niu, Jianhua Zhu, Shasha Li, Xin Wang, Xiaomu Niu and Jian-Kang Zhu
    J Integr Plant Biol    2024, 66 (4): 642-644.   DOI: 10.1111/jipb.13631
    发布日期: 2024-02-23

    预出版日期: 2024-02-23
    摘要196)      英文版    收藏
    9. Expansion and improvement of ChinaMu by MuT-seq and chromosome-level assembly of the Mu-starter genome
    Lei Liang, Yuancong Wang, Yanbin Han, Yicong Chen, Mengfei Li, Yibo Wu, Zeyang Ma, Han Zhao and Rentao Song
    J Integr Plant Biol    2024, 66 (4): 645-659.   DOI: 10.1111/jipb.13637
    发布日期: 2024-03-07

    预出版日期: 2024-03-07
    摘要166)      英文版    收藏
    ChinaMu is the largest sequence-indexed Mutator (Mu) transposon insertional library in maize (Zea mays). In this study, we made significant improvements to the size and quality of the ChinaMu library. We developed a new Mu-tag isolation method Mu-Tn5-seq (MuT-seq). Compared to the previous method used by ChinaMu, MuT-seq recovered 1/3 more germinal insertions, while requiring only about 1/14 of the sequencing volume and 1/5 of the experimental time. Using MuT-seq, we identified 113,879 germinal insertions from 3,168 Mu-active F1 families. We also assembled a high-quality genome for the Mu-active line Mu-starter, which harbors the initial active MuDR element and was used as the pollen donor for the mutation population. Using the Mu-starter genome, we recovered 33,662 (15.6%) additional germinal insertions in 3,244 (7.4%) genes in the Mu-starter line. The Mu-starter genome also improved the assignment of 117,689 (54.5%) germinal insertions. The newly upgraded ChinaMu dataset currently contains 215,889 high-quality germinal insertions. These insertions cover 32,224 pan-genes in the Mu-starter and B73Ref5 genomes, including 23,006 (80.4%) core genes shared by the two genomes. As a test model, we investigated Mu insertions in the pentatricopeptide repeat (PPR) superfamily, discovering insertions for 92% (449/487) of PPR genes in ChinaMu, demonstrating the usefulness of ChinaMu as a functional genomics resource for maize.
    10. An alfalfa MYB-like transcriptional factor MsMYBH positively regulates alfalfa seedling drought resistance and undergoes MsWAV3-mediated degradation
    Kun Shi, Jia Liu, Huan Liang, Hongbin Dong, Jinli Zhang, Yuanhong Wei, Le Zhou, Shaopeng Wang, Jiahao Zhu, Mingshu Cao, Chris S. Jones, Dongmei Ma and Zan Wang
    J Integr Plant Biol    2024, 66 (4): 683-699.   DOI: 10.1111/jipb.13626
    发布日期: 2024-02-15

    预出版日期: 2024-02-15
    摘要220)      英文版    收藏
    Drought is a major threat to alfalfa (Medicago sativa L.) production. The discovery of important alfalfa genes regulating drought response will facilitate breeding for drought-resistant alfalfa cultivars. Here, we report a genome-wide association study of drought resistance in alfalfa. We identified and functionally characterized an MYB-like transcription factor gene (MsMYBH), which increases the drought resistance in alfalfa. Compared with the wild-types, the biomass and forage quality were enhanced in MsMYBH overexpressed plants. Combined RNA-seq, proteomics and chromatin immunoprecipitation analysis showed that MsMYBH can directly bind to the promoters of MsMCP1, MsMCP2, MsPRX1A and MsCARCAB to improve their expression. The outcomes of such interactions include better water balance, high photosynthetic efficiency and scavenge excess H2O2 in response to drought. Furthermore, an E3 ubiquitin ligase (MsWAV3) was found to induce MsMYBH degradation under long-term drought, via the 26S proteasome pathway. Furthermore, variable-number tandem repeats in MsMYBH promoter were characterized among a collection of germplasms, and the variation is associated with promoter activity. Collectively, our findings shed light on the functions of MsMYBH and provide a pivotal gene that could be leveraged for breeding drought-resistant alfalfa. This discovery also offers new insights into the mechanisms of drought resistance in alfalfa.
    第1页,共64页 共632条记录
    版权信息
    主管单位:中国科学技术协会
    主办单位:中国通信学会
    主  编:张 平
    副主编:陆建华 马建峰 杨 震
         杨晨阳 彭长根
    编辑部主任:易东山
    地  址:北京市丰台区成寿寺路11号
         邮电出版大厦8层
    邮政编码:100078
    电  话:010-81055468 81055480
            81055481 81055478
    电子邮件:xuebao@ptpress.com.cn
         txxb@bjxintong.com.cn
    国际标准刊号:ISSN 1000-436X
    国内统一刊号:CN 11-2102/TN
    友情链接
    访问统计
    总访问量
    今日访问
    在线人数
  
Switch on and off: Phospho-events in light signaling pathways
Light is a fundamental environmental cue that dynamically orchestrates plant growth and development through spatiotemporally regulated molecular networks. Among these, phosphorylation, a key post-translational modificati. . .
DOI: 10.1111/jipb.13913
RNA interference-based dsRNA application confers prolonged protection against rice blast and viral diseases, offering a scalable solution for enhanced crop disease management
Rice production is severely impacted by pathogens such as Magnaporthe oryzae and the rice stripe virus (RSV). Ineffectiveness in controlling viruses and the excessive use of fungicides have proven traditional chemical pe. . .
DOI: 10.1111/jipb.13896
2025, Vol. 67 No. 3  No. 2 No. 1
2024, Vol. 66 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2023, Vol. 65 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2022, Vol. 64 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2021, Vol. 63 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2020, Vol. 62 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2019, Vol. 61 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2018, Vol. 60 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2017, Vol. 59 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2016, Vol. 58 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2015, Vol. 57 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2014, Vol. 56 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2013, Vol. 55 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2012, Vol. 54 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2011, Vol. 53 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2010, Vol. 52 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 4 No. 5 No. 3 No. 2 No. 1
2009, Vol. 51 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2008, Vol. 50 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2007, Vol. 49 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2006, Vol. 48 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2005, Vol. 47 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2004, Vol. 46 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2003, Vol. 45 No. 12  No. 11 No. Suppl. No. 10 No. 9 No. 8
No. 7 No. 6 No. 5 No. 4 No. 3 No. 2
No. 1
2002, Vol. 44 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2001, Vol. 43 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
2000, Vol. 42 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1999, Vol. 41 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1998, Vol. 40 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1997, Vol. 39 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1996, Vol. 38 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1995, Vol. 37 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1994, Vol. 36 No. Suppl.  No. 12 No. 11 No. 10 No. 9 No. 8
No. 7 No. 6 No. 5 No. 4 No. 3 No. 2
No. 1
1993, Vol. 35 No. Suppl.  No. 12 No. 11 No. 10 No. 9 No. 8
No. 7 No. 6 No. 5 No. 4 No. 3 No. 2
No. 1
1992, Vol. 34 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1991, Vol. 33 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1990, Vol. 32 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1989, Vol. 31 No. 12  No. 11 No. 10 No. 9 No. 8 No. 7
No. 6 No. 5 No. 4 No. 3 No. 2 No. 1
1988, Vol. 30 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1987, Vol. 29 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1986, Vol. 28 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1985, Vol. 27 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1984, Vol. 26 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1983, Vol. 25 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1982, Vol. 24 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1981, Vol. 23 No. 6  No. 5 No. 4 No. 3 No. 2 No. 1
1980, Vol. 22 No. 4  No. 3 No. 2 No. 1
1979, Vol. 21 No. 4  No. 3 No. 2 No. 1
1978, Vol. 20 No. 4  No. 3 No. 2 No. 1
1977, Vol. 19 No. 4  No. 3 No. 2 No. 1
1976, Vol. 18 No. 4  No. 3 No. 2 No. 1
1975, Vol. 17 No. 4  No. 3 No. 2 No. 1
1974, Vol. 16 No. 4  No. 3 No. 2 No. 1
1973, Vol. 15 No. 2  No. 1
1966, Vol. 14 No. 2  No. 1
1965, Vol. 13 No. 4  No. 3 No. 2 No. 1
1964, Vol. 12 No. 4  No. 3 No. 2 No. 1
1963, Vol. 11 No. 4  No. 3 No. 2 No. 1
1962, Vol. 10 No. 4  No. 3 No. 2 No. 1
1961, Vol. 9 No. 3 
1960, Vol. 9 No. 2  No. 1
1959, Vol. 8 No. 4  No. 3 No. 2 No. 1
1958, Vol. 7 No. 4  No. 3 No. 2 No. 1
1957, Vol. 6 No. 4  No. 3 No. 2 No. 1
1956, Vol. 5 No. 4  No. 3 No. 2 No. 1
1955, Vol. 4 No. 4  No. 3 No. 2 No. 1
1954, Vol. 3 No. 4  No. 3 No. 2 No. 1
1953, Vol. 2 No. 4  No. 3 No. 2 No. 1
1952, Vol. 1 No. 2  No. 1
J Integr Plant Biol. 2020 Vol. 62 (8): 1132-1158 doi: 10.1111/jipb.12894
摘要 407)      PDF (2077KB)(4386)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (1): 25-54 doi: 10.1111/jipb.12899
摘要 2002)      PDF (1470KB)(2432)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (8): 1065-1079 doi: 10.1111/jipb.12891
摘要 483)      PDF (4051KB)(1828)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (8): 1159-1175 doi: 10.1111/jipb.12902
摘要 513)      PDF (1526KB)(1811)       收藏
相关文章 | 多维度评价
Infrageneric and Sectional Relationships in the Genus Rhododendron(Ericaceae) Inferred from ITS Sequence Data
GAO Lian Ming, LI De Zhu, ZHANG Chang Qin, YANG Jun Bo
J Integr Plant Biol. 2002 Vol. 44 (11): 1351-1356
摘要 5542)      PDF (2675KB)(1728)       收藏
相关文章 | 多维度评价
A Cytological Study of Plastid Inheritance in Angiosperms
Hu Shi-yi
J Integr Plant Biol. 1997 Vol. 39 (4): 363-371
摘要 5782)      PDF (756KB)(1581)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2019 Vol. 61 (12): 1201-1205 doi: 10.1111/jipb.12774
摘要 1597)      PDF (10030KB)(1507)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (1): 148-159 doi: 10.1111/jipb.12879
摘要 1338)      PDF (1862KB)(1487)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2020 Vol. 62 (4): 433-455 doi: 10.1111/jipb.12877
摘要 496)      PDF (4139KB)(1449)       收藏
相关文章 | 多维度评价
J Integr Plant Biol. 2019 Vol. 61 (6): 749-764 doi: 10.1111/jipb.12733
摘要 309)      PDF (3366KB)(1432)       收藏
相关文章 | 多维度评价
J Integr Plant Biol
Developmental Mechanism and Distribution Pattern of Stomatal Clusters in Begonia peltatifolia
TANG Min, HU Yu Xi, LIN Jin Xing, JIN Xiao Bai
J Integr Plant Biol. 2002 Vol. 44 (4): 384-390
摘要 19254)      PDF (3136KB)(802)       收藏
相关文章 | 多维度评价
Contributions of Chinese Botanists to Plant Tissue Culture in the 20th Century
CHU Chih-Ching
J Integr Plant Biol. 2002 Vol. 44 (9): 1075-1084
摘要 18742)      PDF (4691KB)(572)       收藏
相关文章 | 多维度评价
The Distribution of Stomata and Photosynthetic Pathway in Leaves
Lin Zhi-fang, Li Shuang-shun and Lin Gui-zhu
J Integr Plant Biol. 1986 Vol. 28 (4): null-null
摘要 17874)      PDF (421KB)(1522)       收藏
相关文章 | 多维度评价
Plant terpenoids: Biosynthesis and ecological functions
Ai-Xia Cheng, Yong-Gen Lou, Ying-Bo Mao, Shan Lu, Ling-Jian Wang and Xiao-Ya Chen
J Integr Plant Biol. 2007 Vol. 49 (2): 179-186 doi: 10.1111/j.1744-7909.2007.00395.x
摘要 14618)            收藏
相关文章 | 多维度评价
The plant vascular system: Evolution, development and functions
William J. Lucas, Andrew Groover, Raffael Lichtenberger, Kaori Furuta, Shri-Ram Yadav, Ykä Helariutta, Xin-Qiang He, Hiroo Fukuda, Julie Kang, Siobhan M. Brady, John W. Patrick, John Sperry, Akiko Yoshida, Ana-Flor López-Millón, Michael A. Grusak, and Pradeep Kachroo
J Integr Plant Biol. 2013 Vol. 55 (4): 294-388 doi: 10.1111/jipb.12041
摘要 14447)            收藏
相关文章 | 多维度评价
Rice Research: Past, Present and Future
Hong Ma, Kang Chong and Xing-Wang Deng
J Integr Plant Biol. 2007 Vol. 49 (6): 729-730 doi: 10.1111/j.1744-7909.2007.00515.x
摘要 13574)            收藏
相关文章 | 多维度评价
Анатомическое исследование природного древесного угля ,полученного врайоне Чанбайщана
Гу он-гэн
J Integr Plant Biol. 1957 Vol. 6 (2): null-null
摘要 13521)      PDF (178KB)(67)       收藏
相关文章 | 多维度评价
The Structure Anomalous Secondary Growth of Stem in Gnetum montanum
Gao Xin-zeng, Chen Yao-tang, Deng Yue-fen and Li Rong-ao
J Integr Plant Biol. 1984 Vol. 26 (6): null-null
摘要 11948)      PDF (2003KB)(1119)       收藏
相关文章 | 多维度评价
Advances in the Studies on Water Uptake by Plant Roots
ZHAO Chang-Xing, DENG Xi-Ping, ZHANG Sui-Qi, YE Qing, Ernst STEUDLE, SHAN Lun
J Integr Plant Biol. 2004 Vol. 46 (5): 505-514
摘要 11391)      PDF (1536KB)(482)       收藏
相关文章 | 多维度评价
Isolation of Rice EPSP Synthase cDNA and Its Sequence Analysis and Copy Number Determination
XU Jun-Wang, WEI Xiao-Li, LI Xu-Gang, CHEN Lei, FENG De-Jiang and ZHU Zhen
J Integr Plant Biol. 2002 Vol. 44 (2): 188-192
摘要 10990)      PDF (3192KB)(410)       收藏
相关文章 | 多维度评价
Phototropins and Their LOV Domains: Versatile Plant Blue-Light Receptors
Winslow R. Briggs, Tong-Seung Tseng, Hae-Young Cho, Trevor E. Swartz, Stuart Sullivan, Roberto A. Bogomolni, Eirini Kaiserli and John M. Christie
J Integr Plant Biol. 2007 Vol. 49 (1): 4 -10 doi: 10.1111/j.1744-7909.2006.00406.x
摘要 ( 6369 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(793)
Functions and Application of the AP2/ERF Transcription Factor Family in Crop Improvement
Zhao-Shi Xu, Ming Chen, Lian-Cheng Li and You-Zhi Ma
J Integr Plant Biol. 2011 Vol. 53 (7): 570 -585 doi: 10.1111/j.1744-7909.2011.01062.x
摘要 ( 5271 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(403)
Global Change Effects on Plant Chemical Defenses against Insect Herbivores
M. Gabriela Bidart-Bouzat and Adebobola Imeh-Nathaniel
J Integr Plant Biol. 2008 Vol. 50 (11): 1339 -1354 doi: 10.1111/j.1744-7909.2008.00751.x
摘要 ( 5763 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(374)
Molecular analysis of legume nodule development and autoregulation
Brett J. Ferguson, Arief Indrasumunar, Satomi Hayashi, Meng-Han Lin, Yu-Hsiang Lin, Dugald E. Reid and Peter M. Gresshoff
J Integr Plant Biol. 2010 Vol. 52 (1): 61 -76 doi: 10.1111/j.1744-7909.2010.00899.x
摘要 ( 5168 )      PDF (824KB) ( 445 )       收藏
相关文章 | 多维度评价
被引次数: Baidu(364)
Reactive Oxygen Species during Plant-microorganism Early Interactions
Amrit K Nanda, Emilie Andrio, Daniel Marino, Nicolas Pauly, and Christophe Dunand
J Integr Plant Biol. 2010 Vol. 52 (2): 195 -204 doi: 10.1111/j.1744-7909.2010.00933.x
摘要 ( 4913 )      PDF (409KB) ( 206 )       收藏
相关文章 | 多维度评价
被引次数: Baidu(354)
Thermal Hardening: A New Seed Vigor Enhancement Tool in Rice
Muhammad FAROOQ, S. M. A. BASRA, Nazir AHMAD and K. HAFEEZ
J Integr Plant Biol. 2005 Vol. 47 (2): 187 -193 doi: 10.1111/j.1744-7909.2005.00031.x
摘要 ( 7500 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(343)
How plants cope with cadmium: Staking all on metabolism and gene expression
Giovanni DalCorso, Silvia Farinati, Silvia Maistri and Antonella Furini
J Integr Plant Biol. 2008 Vol. 50 (10): 1268 -1280 doi: 10.1111/j.1744-7909.2008.00737.x
摘要 ( 6680 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(342)
The WRKY Gene Family in Rice (Oryza sativa)
Christian A. Ross, Yue Liu and Qingxi J. Shen
J Integr Plant Biol. 2007 Vol. 49 (6): 827 -842 doi: 10.1111/j.1744-7909.2007.00504.x
摘要 ( 9174 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(339)
Abscisic Acid-mediated Epigenetic Processes in Plant Development and Stress Responses
Viswanathan Chinnusamy, Zhizhong Gong and Jian-Kang Zhu
J Integr Plant Biol. 2008 Vol. 50 (10): 1187 -1195 doi: 10.1111/j.1744-7909.2008.00727.x
摘要 ( 6285 )            收藏
相关文章 | 多维度评价
被引次数: Baidu(336)
Metabolism and Long-distance Translocation of Cytokinins
Toru Kudo, Takatoshi Kiba and Hitoshi Sakakibara
J Integr Plant Biol. 2010 Vol. 52 (1): 53 -60 doi: 10.1111/j.1744-7909.2010.00898.x
摘要 ( 3706 )      PDF (327KB) ( 390 )       收藏
相关文章 | 多维度评价
被引次数: Baidu(335)
版权信息
主管单位:中国科学技术协会
主办单位:中国通信学会
主  编:张 平
副主编:陆建华 马建峰 杨 震
     杨晨阳 彭长根
编辑部主任:易东山
地  址:北京市丰台区成寿寺路11号
     邮电出版大厦8层
邮政编码:100078
电  话:010-81055468 81055480
        81055481 81055478
电子邮件:xuebao@ptpress.com.cn
     txxb@bjxintong.com.cn
国际标准刊号:ISSN 1000-436X
国内统一刊号:CN 11-2102/TN
友情链接
访问统计
总访问量
今日访问
在线人数
[an error occurred while processing this directive]