]*>","")" /> Effect of Elevated CO2 and Drought on Soil Microbial Communities Associated with Andropogon gerardii

J Integr Plant Biol ›› 2008, Vol. 50 ›› Issue (11): 1406-1415.DOI: 10.1111/j.1744-7909.2008.00752.x

• • 上一篇    下一篇

Effect of Elevated CO2 and Drought on Soil Microbial Communities Associated with Andropogon gerardii

Issmat I. Kassem, Puneet Joshi, Von Sigler, Scott Heckathorn and Qi Wang   

  • 收稿日期:2008-05-09 接受日期:2008-06-22 出版日期:2008-11-11 发布日期:2008-11-11

Effect of Elevated CO2 and Drought on Soil Microbial Communities Associated with Andropogon gerardii

Issmat I. Kassem, Puneet Joshi, Von Sigler, Scott Heckathorn and Qi Wang   

  • Received:2008-05-09 Accepted:2008-06-22 Online:2008-11-11 Published:2008-11-11

Abstract: Our understanding of the effects of elevated atmospheric CO2, singly and in combination with other environmental changes, on plant-soil interactions is incomplete. Elevated CO2 effects on C4 plants, though smaller than on C3 species, are mediated mostly via decreased stomatal conductance and thus water loss. Therefore, we characterized the interactive effect of elevated CO2 and drought on soil microbial communities associated with a dominant C4 prairie grass, Andropogon gerardii. Elevated CO2 and drought both affected resources available to the soil microbial community. For example, elevated CO2 increased the soil C:N ratio and water content during drought, while drought alone decreased both. Drought significantly decreased soil microbial biomass. In contrast, elevated CO2 increased biomass, while ameliorating biomass decreases induced under drought. Total and active direct bacterial counts and carbon substrate use (overall use and number of used sources) increased significantly under elevated CO2. Denaturing gradient gel electrophoresis analysis revealed that drought and elevated CO2, singly and combined, did not affect the soil bacteria community structure. We conclude that elevated CO2 alone increased bacterial abundance and microbial activity and carbon use, probably in response to increased root exudation. Elevated CO2 also limited drought-related impacts on microbial activity and biomass, which likely resulted from decreased plant water use under elevated CO2. These are among the first results showing that elevated CO2 and drought work in opposition to modulate plant-associated soil-bacteria responses, which should then influence soil resources and plant and ecosystem function.

Key words: Elevated CO2, Drought, Soil microbial communities, DGGE

[an error occurred while processing this directive]