]*>","")" /> State Transition, Is It a Photochemical or Non-photochemical Process in Leaf in Response to Irradiance?

J Integr Plant Biol ›› 2003, Vol. 45 ›› Issue (12): 1428-1433.

• • 上一篇    下一篇

State Transition, Is It a Photochemical or Non-photochemical Process in Leaf in Response to Irradiance?

JIA Hu-Sen , LI De-Quan   

  • 发布日期:2003-12-01

State Transition, Is It a Photochemical or Non-photochemical Process in Leaf in Response to Irradiance?

JIA Hu-Sen , LI De-Quan   

  • Published:2003-12-01

Abstract:

The response of steady-state fluorescence (Fs) to irradiance in apple (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd.) leaf increased and decreased at light levels below and above 400 mmol.m-2.s-1 photosynthetic photon flux density (PPFD), respectively, while the light-adapted maximal fluorescence (Fm'') and minimal fluorescence (Fo'') decreased constantly with the increasing PPFD, and the closure of photosystem Ⅱ reaction center (PSⅡ RC) increased continuously, reflected by the chlorophyll fluorescence parameter of (Fs-Fo'')/(Fm''-Fo''). These facts indicated that decrease of Fs above 400 mmol.m-2.s-1 PPFD was not caused by closure of PSⅡ RC, but was mainly resulted from the process of light transfer from light-harvesting complexⅡ (LHCⅡ) to PSⅡ RC. In the presence of N-ethylmaleimide (NEM), an inhibitor of photosynthetic state transition, Fs kept on increasing in apple leaf at light levels from 400 to 700 mmol.m-2.s-1, which was the photosynthetic saturation irradiance of apple leaves. In addition, Fs still increased at light levels over 700 mmol.m-2.s-1 in apple leaf pre-treated with dithiothreitol (DTT), an inhibitor of xanthophyll cycle. These changes showed that state transition and xanthophyll cycle caused a decrease of Fs in apple leaf at light levels below and above the photosynthetic saturation irradiance, respectively. When apple leaf was pre-treated with NEM, the PSⅡ apparent rate of photochemical reaction (P-rate) and photochemical quenching (qP) decreased significantly in the light range of 600-800 mmol.m-2.s-1, but the non-photochemical quenching (qN) existed a small increase at 600-800 mmol.m-2.s-1 and a decrease above 800 mmol.m-2.s-1. These phenomena suggested that state transition was mainly a photochemical and a non-photochemical process in apple leaf responding to light lower and higher than photosynthetic saturation irradiance, respectively.

 

[an error occurred while processing this directive]