Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
  
Genomic analysis of Nypa fruticans elucidates its intertidal adaptations and early palm evolution
Weihong Wu, Xiao Feng, Nan Wang, Shao Shao, Min Liu, Fa Si, Linhao Chen, Chuanfeng Jin, Shaohua Xu, Zixiao Guo, Cairong Zhong, Suhua Shi and Ziwen He
J Integr Plant Biol 2024, 66 (4): 824-843.  
doi: 10.1111/jipb.13625
Abstract (Browse 45)  |   Save
Nypa fruticans (Wurmb), a mangrove palm species with origins dating back to the Late Cretaceous period, is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms. Here, we present a chromosome-level genome sequence and assembly for N. fruticans. We integrated the genomes of N. fruticans and other palm family members for a comparative genomic analysis, which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago, shaping the distinctive characteristics observed in this clade. We also inferred a low mutation rate for the N. fruticans genome, which underwent strong purifying selection and evolved slowly, thus contributing to its stability over a long evolutionary period. Moreover, ancient duplicates were preferentially retained, with critical genes having experienced positive selection, enhancing waterlogging tolerance in N. fruticans. Furthermore, we discovered that the pseudogenization of Early Methionine-labelled 1 (EM1) and EM6 in N. fruticans underly its crypto-vivipary characteristics, reflecting its intertidal adaptation. Our study provides valuable genomic insights into the evolutionary history, genome stability, and adaptive evolution of the mangrove palm. Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A widely targeted metabolite modificomics strategy for modified metabolites identification in tomato
Jun Yang, Ridong Chen, Chao Wang, Chun Li, Weizhen Ye, Zhonghui Zhang and Shouchuang Wang
J Integr Plant Biol 2024, 66 (4): 810-823.  
DOI: 10.1111/jipb.13629
Abstract (Browse 92)  |   Save
The structural and functional diversity of plant metabolites is largely created via chemical modification of a basic backbone. However, metabolite modifications in plants have still not been thoroughly investigated by metabolomics approaches. In this study, a widely targeted metabolite modificomics (WTMM) strategy was developed based on ultra-high performance liquid chromatography-quadrupole-linear ion trap (UHPLC-Q-Trap) and UHPLC-Q-Exactive-Orbitrap (UHPLC-QE-Orbitrap), which greatly improved the detection sensitivity and the efficiency of identification of modified metabolites. A metabolite modificomics study was carried out using tomato as a model, and over 34,000 signals with MS2 information were obtained from approximately 232 neutral loss transitions. Unbiased metabolite profiling was also performed by utilizing high-resolution mass spectrometry data to annotate a total of 2,118 metabolites with 125 modification types; of these, 165 modified metabolites were identified in this study. Next, the WTMM database was used to assess diseased tomato tissues and 29 biomarkers were analyzed. In summary, the WTMM strategy is not only capable of large-scale detection and quantitative analysis of plant-modified metabolites in plants, but also can be used for plant biomarker development.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The RING zinc finger protein LbRZF1 promotes salt gland development and salt tolerance in Limonium bicolor
Zongran Yang, Ziwei Zhang, Ziqi Qiao, Xueying Guo, Yixuan Wen, Yingxue Zhou, Chunliang Yao, Hai Fan, Baoshan Wang and Guoliang Han
J Integr Plant Biol 2024, 66 (4): 787-809.  
doi: 10.1111/jipb.13641
Abstract (Browse 34)  |   Save
The recretohalophyte Limonium bicolor thrives in high-salinity environments because salt glands on the above-ground parts of the plant help to expel excess salt. Here, we characterize a nucleus-localized C3HC4 (RING-HC)-type zinc finger protein of L. bicolor named RING ZINC FINGER PROTEIN 1 (LbRZF1). LbRZF1 was expressed in salt glands and in response to NaCl treatment. LbRZF1 showed no E3 ubiquitin ligase activity. The phenotypes of overexpression and knockout lines for LbRZF1 indicated that LbRZF1 positively regulated salt gland development and salt tolerance in L. bicolor. lbrzf1 mutants had fewer salt glands and secreted less salt than did the wild-type, whereas LbRZF1-overexpressing lines had opposite phenotypes, in keeping with the overall salt tolerance of these plants. A yeast two-hybrid screen revealed that LbRZF1 interacted with LbCATALASE2 (LbCAT2) and the transcription factor LbMYB113, leading to their stabilization. Silencing of LbCAT2 or LbMYB113 decreased salt gland density and salt tolerance. The heterologous expression of LbRZF1 in Arabidopsis thaliana conferred salt tolerance to this non-halophyte. We also identified the transcription factor LbMYB48 as an upstream regulator of LbRZF1 transcription. The study of LbRZF1 in the regulation network of salt gland development also provides a good foundation for transforming crops and improving their salt resistance.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
OsWRKY78 regulates panicle exsertion via gibberellin signaling pathway in rice
Enyang Mei, Mingliang He, Min Xu, Jiaqi Tang, Jiali Liu, Yingxiang Liu, Zhipeng Hong, Xiufeng Li, Zhenyu Wang, Qingjie Guan, Xiaojie Tian and Qingyun Bu
J Integr Plant Biol 2024, 66 (4): 771-786.  
DOI: 10.1111/jipb.13636
Abstract (Browse 112)  |   Save
Panicle exsertion is one of the crucial agronomic traits in rice (Oryza sativa). Shortening of panicle exsertion often leads to panicle enclosure and severely reduces seed production. Gibberellin (GA) plays important roles in regulating panicle exsertion. However, the underlying mechanism and the relative regulatory network remain elusive. Here, we characterized the oswrky78 mutant showing severe panicle enclosure, and found that the defect of oswrky78 is caused by decreased bioactive GA contents. Biochemical analysis demonstrates that OsWRKY78 can directly activate GA biosynthesis and indirectly suppress GA metabolism. Moreover, we found OsWRKY78 can interact with and be phosphorylated by mitogen-activated protein kinase (MAPK) kinase OsMAPK6, and this phosphorylation can enhance OsWRKY78 stability and is necessary for its biological function. Taken together, these results not only reveal the critical function of OsWRKY78, but also reveal its mechanism via mediating crosstalk between MAPK and the GA signaling pathway in regulating panicle exsertion.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
SlBEL11 regulates flavonoid biosynthesis, thus fine-tuning auxin efflux to prevent premature fruit drop in tomato
Xiufen Dong, Xianfeng Liu, Lina Cheng, Ruizhen Li, Siqi Ge, Sai Wang, Yue Cai, Yang Liu, Sida Meng, Cai-Zhong Jiang, Chun-Lin Shi, Tianlai Li, Daqi Fu, Mingfang Qi and Tao Xu
J Integr Plant Biol 2024, 66 (4): 749-770.  
doi: 10.1111/jipb.13627
Abstract (Browse 94)  |   Save
Auxin regulates flower and fruit abscission, but how developmental signals mediate auxin transport in abscission remains unclear. Here, we reveal the role of the transcription factor BEL1-LIKE HOMEODOMAIN11 (SlBEL11) in regulating auxin transport during abscission in tomato (Solanum lycopersicum). SlBEL11 is highly expressed in the fruit abscission zone, and its expression increases during fruit development. Knockdown of SlBEL11 expression by RNA interference (RNAi) caused premature fruit drop at the breaker (Br) and 3d post-breaker (Br+3) stages of fruit development. Transcriptome and metabolome analysis of SlBEL11-RNAi lines revealed impaired flavonoid biosynthesis and decreased levels of most flavonoids, especially quercetin, which functions as an auxin transport inhibitor. This suggested that SlBEL11 prevents premature fruit abscission by modulating auxin efflux from fruits, which is crucial for the formation of an auxin response gradient. Indeed, quercetin treatment suppressed premature fruit drop in SlBEL11-RNAi plants. DNA affinity purification sequencing (DAP-seq) analysis indicated that SlBEL11 induced expression of the transcription factor gene SlMYB111 by directly binding to its promoter. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay showed that S. lycopersicum MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG111 (SlMYB111) induces the expression of the core flavonoid biosynthesis genes SlCHS1, SlCHI, SlF3H, and SlFLS by directly binding to their promoters. Our findings suggest that the SlBEL11-SlMYB111 module modulates flavonoid biosynthesis to fine-tune auxin efflux from fruits and thus maintain an auxin response gradient in the pedicel, thereby preventing premature fruit drop.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Potassium transporter OsHAK9 regulates seed germination under salt stress by preventing gibberellin degradation through mediating OsGA2ox7 in rice
Peng Zeng, Ting Xie, Jiaxin Shen, Taokai Liang, Lu Yin, Kexin Liu, Ying He, Mingming Chen, Haijuan Tang, Sunlu Chen, Sergey Shabala, Hongsheng Zhang and Jinping Cheng
J Integr Plant Biol 2024, 66 (4): 731-748.  
doi: 10.1111/jipb.13642
Abstract (Browse 69)  |   Save
Soil salinity has a major impact on rice seed germination, severely limiting rice production. Herein, a rice germination defective mutant under salt stress (gdss) was identified by using chemical mutagenesis. The GDSS gene was detected via MutMap and shown to encode potassium transporter OsHAK9. Phenotypic analysis of complementation and mutant lines demonstrated that OsHAK9 was an essential regulator responsible for seed germination under salt stress. OsHAK9 is highly expressed in germinating seed embryos. Ion contents and non-invasive micro-test technology results showed that OsHAK9 restricted K+ efflux in salt-exposed germinating seeds for the balance of K+/Na+. Disruption of OsHAK9 significantly reduced gibberellin 4 (GA4) levels, and the germination defective phenotype of oshak9a was partly rescued by exogenous GA3 treatment under salt stress. RNA sequencing (RNA-seq) and real-time quantitative polymerase chain reaction analysis demonstrated that the disruption of OsHAK9 improved the GA-deactivated gene OsGA2ox7 expression in germinating seeds under salt stress, and the expression of OsGA2ox7 was significantly inhibited by salt stress. Null mutants of OsGA2ox7 created using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 approach displayed a dramatically increased seed germination ability under salt stress. Overall, our results highlight that OsHAK9 regulates seed germination performance under salt stress involving preventing GA degradation by mediating OsGA2ox7, which provides a novel clue about the relationship between GA and OsHAKs in rice.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The OsWRKY72-OsAAT30/OsGSTU26 module mediates reactive oxygen species scavenging to drive heterosis for salt tolerance in hybrid rice
Citao Liu, Bigang Mao, Yanxia Zhang, Lei tian, Biao Ma, Zhuo Chen, Zhongwei Wei, Aifu Li, Ye Shao, Gongye Cheng, Lingling Li, Wenyu Li, Di Zhang, Xiaoping Ding, Jiangxiang Peng, Yulin Peng, Jiwai He, Nenghui Ye, Dingyang Yuan, Chengcai Chu and Meijuan Duan
J Integr Plant Biol 2024, 66 (4): 709-730.  
DOI: 10.1111/jipb.13640
Abstract (Browse 99)  |   Save
Hybrid rice (Oryza sativa) generally outperforms its inbred parents in yield and stress tolerance, a phenomenon termed heterosis, but the underlying mechanism is not completely understood. Here, we combined transcriptome, proteome, physiological, and heterosis analyses to examine the salt response of super hybrid rice Chaoyou1000 (CY1000). In addition to surpassing the mean values for its two parents (mid-parent heterosis), CY1000 exhibited a higher reactive oxygen species scavenging ability than both its parents (over-parent heterosis or heterobeltiosis). Nonadditive expression and allele-specific gene expression assays showed that the glutathione S-transferase gene OsGSTU26 and the amino acid transporter gene OsAAT30 may have major roles in heterosis for salt tolerance, acting in an overdominant fashion in CY1000. Furthermore, we identified OsWRKY72 as a common transcription factor that binds and regulates OsGSTU26 and OsAAT30. The salt-sensitive phenotypes were associated with the OsWRKY72paternal genotype or the OsAAT30maternal genotype in core rice germplasm varieties. OsWRKY72paternal specifically repressed the expression of OsGSTU26 under salt stress, leading to salinity sensitivity, while OsWRKY72maternal specifically repressed OsAAT30, resulting in salinity tolerance. These results suggest that the OsWRKY72-OsAAT30/OsGSTU26 module may play an important role in heterosis for salt tolerance in an overdominant fashion in CY1000 hybrid rice, providing valuable clues to elucidate the mechanism of heterosis for salinity tolerance in hybrid rice.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Structural insights into the Oryza sativa cation transporters HKTs in salt tolerance
Ran Gao, Yutian Jia, Xia Xu, Peng Fu, Jiaqi Zhou and Guanghui Yang
J Integr Plant Biol 2024, 66 (4): 700-708.  
DOI: 10.1111/jipb.13632
Abstract (Browse 34)  |   Save
The high-affinity potassium transporters (HKTs), selectively permeable to either Na+ alone or Na+/K+, play pivotal roles in maintaining plant Na+/K+ homeostasis. Although their involvement in salt tolerance is widely reported, the molecular underpinnings of Oryza sativa HKTs remain elusive. In this study, we elucidate the structures of OsHKT1;1 and OsHKT2;1, representing two distinct classes of rice HKTs. The dimeric assembled OsHKTs can be structurally divided into four domains. At the dimer interface, a half-helix or a loop in the third domain is coordinated by the C-terminal region of the opposite subunit. Additionally, we present the structures of OsHKT1;5 salt-tolerant and salt-sensitive variants, a key quantitative trait locus associated with salt tolerance. The salt-tolerant variant of OsHKT1;5 exhibits enhanced Na+ transport capability and displays a more flexible conformation. These findings shed light on the molecular basis of rice HKTs and provide insights into their role in salt tolerance.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
An alfalfa MYB-like transcriptional factor MsMYBH positively regulates alfalfa seedling drought resistance and undergoes MsWAV3-mediated degradation
Kun Shi, Jia Liu, Huan Liang, Hongbin Dong, Jinli Zhang, Yuanhong Wei, Le Zhou, Shaopeng Wang, Jiahao Zhu, Mingshu Cao, Chris S. Jones, Dongmei Ma and Zan Wang
J Integr Plant Biol 2024, 66 (4): 683-699.  
doi: 10.1111/jipb.13626
Abstract (Browse 102)  |   Save
Drought is a major threat to alfalfa (Medicago sativa L.) production. The discovery of important alfalfa genes regulating drought response will facilitate breeding for drought-resistant alfalfa cultivars. Here, we report a genome-wide association study of drought resistance in alfalfa. We identified and functionally characterized an MYB-like transcription factor gene (MsMYBH), which increases the drought resistance in alfalfa. Compared with the wild-types, the biomass and forage quality were enhanced in MsMYBH overexpressed plants. Combined RNA-seq, proteomics and chromatin immunoprecipitation analysis showed that MsMYBH can directly bind to the promoters of MsMCP1, MsMCP2, MsPRX1A and MsCARCAB to improve their expression. The outcomes of such interactions include better water balance, high photosynthetic efficiency and scavenge excess H2O2 in response to drought. Furthermore, an E3 ubiquitin ligase (MsWAV3) was found to induce MsMYBH degradation under long-term drought, via the 26S proteasome pathway. Furthermore, variable-number tandem repeats in MsMYBH promoter were characterized among a collection of germplasms, and the variation is associated with promoter activity. Collectively, our findings shed light on the functions of MsMYBH and provide a pivotal gene that could be leveraged for breeding drought-resistant alfalfa. This discovery also offers new insights into the mechanisms of drought resistance in alfalfa.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
OsNAC5 orchestrates OsABI5 to fine-tune cold tolerance in rice
Ruiqing Li, Yue Song, Xueqiang Wang, Chenfan Zheng, Bo Liu, Huali Zhang, Jian Ke, Xuejing Wu, Liquan Wu, Ruifang Yang and Meng Jiang
J Integr Plant Biol 2024, 66 (4): 660-682.  
DOI: 10.1111/jipb.13585
Abstract (Browse 199)  |   Save
Due to its tropical origins, rice (Oryza sativa) is susceptible to cold stress, which poses severe threats to production. OsNAC5, a NAC-type transcription factor, participates in the cold stress response of rice, but the detailed mechanisms remain poorly understood. Here, we demonstrate that OsNAC5 positively regulates cold tolerance at germination and in seedlings by directly activating the expression of ABSCISIC ACID INSENSITIVE 5 (OsABI5). Haplotype analysis indicated that single nucleotide polymorphisms in a NAC-binding site in the OsABI5 promoter are strongly associated with cold tolerance. OsNAC5 also enhanced OsABI5 stability, thus regulating the expression of cold-responsive (COR) genes, enabling fine-tuned control of OsABI5 action for rapid, precise plant responses to cold stress. DNA affinity purification sequencing coupled with transcriptome deep sequencing identified several OsABI5 target genes involved in COR expression, including DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR 1A (OsDREB1A), OsMYB20, and PEROXIDASE 70 (OsPRX70). In vivo and in vitro analyses suggested that OsABI5 positively regulates COR gene transcription, with marked COR upregulation in OsNAC5-overexpressing lines and downregulation in osnac5 and/or osabi5 knockout mutants. This study extends our understanding of cold tolerance regulation via OsNAC5 through the OsABI5-CORs transcription module, which may be used to ameliorate cold tolerance in rice via advanced breeding.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Expansion and improvement of ChinaMu by MuT-seq and chromosome-level assembly of the Mu-starter genome
Lei Liang, Yuancong Wang, Yanbin Han, Yicong Chen, Mengfei Li, Yibo Wu, Zeyang Ma, Han Zhao and Rentao Song
J Integr Plant Biol 2024, 66 (4): 645-659.  
doi: 10.1111/jipb.13637
Abstract (Browse 60)  |   Save
ChinaMu is the largest sequence-indexed Mutator (Mu) transposon insertional library in maize (Zea mays). In this study, we made significant improvements to the size and quality of the ChinaMu library. We developed a new Mu-tag isolation method Mu-Tn5-seq (MuT-seq). Compared to the previous method used by ChinaMu, MuT-seq recovered 1/3 more germinal insertions, while requiring only about 1/14 of the sequencing volume and 1/5 of the experimental time. Using MuT-seq, we identified 113,879 germinal insertions from 3,168 Mu-active F1 families. We also assembled a high-quality genome for the Mu-active line Mu-starter, which harbors the initial active MuDR element and was used as the pollen donor for the mutation population. Using the Mu-starter genome, we recovered 33,662 (15.6%) additional germinal insertions in 3,244 (7.4%) genes in the Mu-starter line. The Mu-starter genome also improved the assignment of 117,689 (54.5%) germinal insertions. The newly upgraded ChinaMu dataset currently contains 215,889 high-quality germinal insertions. These insertions cover 32,224 pan-genes in the Mu-starter and B73Ref5 genomes, including 23,006 (80.4%) core genes shared by the two genomes. As a test model, we investigated Mu insertions in the pentatricopeptide repeat (PPR) superfamily, discovering insertions for 92% (449/487) of PPR genes in ChinaMu, demonstrating the usefulness of ChinaMu as a functional genomics resource for maize.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Breeding exceptionally fragrant soybeans for soy milk with strong aroma
Hongtao Xie, Minglei Song, Xuesong Cao, Qingfeng Niu, Jianhua Zhu, Shasha Li, Xin Wang, Xiaomu Niu and Jian-Kang Zhu
J Integr Plant Biol 2024, 66 (4): 642-644.  
doi: 10.1111/jipb.13631
Abstract (Browse 36)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
CRISPR/CasΦ2-mediated gene editing in wheat and rye
Sanzeng Zhao, Xueying Han, Yachen Zhu, Yuwei Han, Huiyun Liu, Zhen Chen, Huifang Li, Dan Wang, Chaofan Tian, Yuting Yuan, Yajie Guo, Xiaomin Si, Daowen Wang and Xiang Ji
J Integr Plant Biol 2024, 66 (4): 638-641.  
doi: 10.1111/jipb.13624
Abstract (Browse 50)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Maize gets an iron boost: Biofortification breakthrough holds promise to combat iron deficiency
Sunil Kumar Sahu
J Integr Plant Biol 2024, 66 (4): 635-637.  
doi: 10.1111/jipb.13623
Abstract (Browse 46)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
New insight into Ca2+-permeable channel in plant immunity
Wei Wang, Hang‐Yuan Cheng and Jian‐Min Zhou
J Integr Plant Biol 2024, 66 (3): 623-631.  
doi: 10.1111/jipb.13613
Abstract (Browse 47)  |   Save
Calcium ions (Ca2+) are crucial intracellular second messengers in eukaryotic cells. Upon pathogen perception, plants generate a transient and rapid increase in cytoplasmic Ca2+ levels, which is subsequently decoded by Ca2+ sensors and effectors to activate downstream immune responses. The elevation of cytosolic Ca2+ is commonly attributed to Ca2+ influx mediated by plasma membrane-localized Ca2+–permeable channels. However, the contribution of Ca2+ release triggered by intracellular Ca2+-permeable channels in shaping Ca2+ signaling associated with plant immunity remains poorly understood. This review discusses recent advances in understanding the mechanism underlying the shaping of Ca2+ signatures upon the activation of immune receptors, with particular emphasis on the identification of intracellular immune receptors as non-canonical Ca2+-permeable channels. We also discuss the involvement of Ca2+ release from the endoplasmic reticulum in generating Ca2+ signaling during plant immunity.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Plant virology in the 21st century in China: Recent advances and future directions
Jianguo Wu, Yongliang Zhang, Fangfang Li, Xiaoming Zhang, Jian Ye, Taiyun Wei, Zhenghe Li, Xiaorong Tao, Feng Cui, Xianbing Wang, Lili Zhang, Fei Yan, Shifang Li, Yule Liu, Dawei Li, Xueping Zhou and Yi Li
J Integr Plant Biol 2024, 66 (3): 579-622.  
doi: 10.1111/jipb.13580
Abstract (Browse 128)  |   Save
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Nuclear phylogenomics of angiosperms and insights into their relationships and evolution
Guojin Zhang and Hong Ma
J Integr Plant Biol 2024, 66 (3): 546-578.  
doi: 10.1111/jipb.13609
Abstract (Browse 64)  |   Save
Angiosperms (flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the “abominable mystery,” hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological, and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences, dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families, and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella, Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families. Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore, we discuss the implications of nuclear phylogenomic analyses on ancestral reconstruction of morphological, physiological, and ecological characters of angiosperm groups, limitations of current nuclear phylogenomic studies, and the taxa that require future attention.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A historical review of hybrid rice breeding
Xiaoming Zheng, Fei Wei, Cheng Cheng and Qian Qian
J Integr Plant Biol 2024, 66 (3): 532-545.  
doi: 10.1111/jipb.13598
Abstract (Browse 58)  |   Save
The development of germplasm resources and advances in breeding methods have led to steady increases in yield and quality of rice (Oryza sativa L.). Three milestones in the recent history of rice breeding have contributed to these increases: dwarf rice breeding, hybrid rice breeding, and super rice breeding. On the 50th anniversary of the success of three-line hybrid rice, we highlight important scientific discoveries in rice breeding that were made by Chinese scientists and summarize the broader history of the field. We discuss the strategies that could be used in the future to optimize rice breeding further in the hope that China will continue to play a leading role in international rice breeding.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Molecular regulation of the key specialized metabolism pathways in medicinal plants
Min Shi, Siwei Zhang, Zizhen Zheng, Itay Maoz, Lei Zhang and Guoyin Kai
J Integr Plant Biol 2024, 66 (3): 510-531.  
doi: 10.1111/jipb.13634
Abstract (Browse 43)  |   Save
The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Functional genomics of Brassica napus: Progresses, challenges, and perspectives
Zengdong Tan, Xu Han, Cheng Dai, Shaoping Lu, Hanzi He, Xuan Yao, Peng Chen, Chao Yang, Lun Zhao, Qing‐Yong Yang, Jun Zou, Jing Wen, Dengfeng Hong, Chao Liu, Xianhong Ge, Chuchuan Fan, Bing Yi, Chunyu Zhang, Chaozhi Ma, Kede Liu, Jinxiong Shen, Jinxing Tu, Guangsheng Yang, Tingdong Fu, Liang Guo and Hu Zhao
J Integr Plant Biol 2024, 66 (3): 484-509.  
doi: 10.1111/jipb.13635
Abstract (Browse 40)  |   Save
Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Orchestrating seed storage protein and starch accumulation toward overcoming yield–quality trade-off in cereal crops
Shuanghe Cao, Bingyan Liu, Daowen Wang, Awais Rasheed, Lina Xie, Xianchun Xia and Zhonghu He
J Integr Plant Biol 2024, 66 (3): 468-483.  
DOI: 10.1111/jipb.13633
Abstract (Browse 45)  |   Save
Achieving high yield and good quality in crops is essential for human food security and health. However, there is usually disharmony between yield and quality. Seed storage protein (SSP) and starch, the predominant components in cereal grains, determine yield and quality, and their coupled synthesis causes a yield–quality trade-off. Therefore, dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality. Here, we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops, including maize, rice and wheat. We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights. We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding. Finally, future perspectives on major challenges are proposed.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Wood of trees: Cellular structure, molecular formation, and genetic engineering
Yingying Zhu and Laigeng Li
J Integr Plant Biol 2024, 66 (3): 443-467.  
doi: 10.1111/jipb.13589
Abstract (Browse 92)  |   Save
Wood is an invaluable asset to human society due to its renewable nature, making it suitable for both sustainable energy production and material manufacturing. Additionally, wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants. Nevertheless, with the expansion of the global population and ongoing industrialization, forest coverage has been substantially decreased, resulting in significant challenges for wood production and supply. Wood production practices have changed away from natural forests toward plantation forests. Thus, understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality, fast-growing plantation trees. Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many. Tremendous studies have been carried out in recent years on the molecular, genetic, and cell-biological mechanisms of wood formation, and considerable progress and findings have been achieved. These studies and findings indicate enormous possibilities and prospects for tree improvement. This review will outline and assess the cellular and molecular mechanisms of wood formation, as well as studies on genetically improving forest trees, and address future development prospects.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Striking a growth–defense balance: Stress regulators that function in maize development
Shiyi Xie, Hongbing Luo, Wei Huang, Weiwei Jin and Zhaobin Dong
J Integr Plant Biol 2024, 66 (3): 424-442.  
doi: 10.1111/jipb.13570
Abstract (Browse 238)  |   Save
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
How plants sense and respond to osmotic stress
Bo Yu, Dai‐Yin Chao and Yang Zhao
J Integr Plant Biol 2024, 66 (3): 394-423.  
doi: 10.1111/jipb.13622
Abstract (Browse 27)  |   Save
Drought is one of the most serious abiotic stresses to land plants. Plants sense and respond to drought stress to survive under water deficiency. Scientists have studied how plants sense drought stress, or osmotic stress caused by drought, ever since Charles Darwin, and gradually obtained clues about osmotic stress sensing and signaling in plants. Osmotic stress is a physical stimulus that triggers many physiological changes at the cellular level, including changes in turgor, cell wall stiffness and integrity, membrane tension, and cell fluid volume, and plants may sense some of these stimuli and trigger downstream responses. In this review, we emphasized water potential and movements in organisms, compared putative signal inputs in cell wall-containing and cell wall-free organisms, prospected how plants sense changes in turgor, membrane tension, and cell fluid volume under osmotic stress according to advances in plants, animals, yeasts, and bacteria, summarized multilevel biochemical and physiological signal outputs, such as plasma membrane nanodomain formation, membrane water permeability, root hydrotropism, root halotropism, Casparian strip and suberin lamellae, and finally proposed a hypothesis that osmotic stress responses are likely to be a cocktail of signaling mediated by multiple osmosensors. We also discussed the core scientific questions, provided perspective about the future directions in this field, and highlighted the importance of robust and smart root systems and efficient source-sink allocations for generating future high-yield stress-resistant crops and plants.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Integrative regulatory mechanisms of stomatal movements under changing climate
Jingbo Zhang, Xuexue Chen, Yajing Song and Zhizhong Gong
J Integr Plant Biol 2024, 66 (3): 368-393.  
doi: 10.1111/jipb.13611
Abstract (Browse 37)  |   Save
Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2, reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development
Pengtao Wang, Wen‐Cheng Liu, Chao Han, Situ Wang, Ming‐Yi Bai and Chun‐Peng Song
J Integr Plant Biol 2024, 66 (3): 330-367.  
doi: 10.1111/jipb.13601
Abstract (Browse 129)  |   Save
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Designing salt stress-resilient crops: Current progress and future challenges
Xiaoyan Liang, Jianfang Li, Yongqing Yang, Caifu Jiang and Yan Guo
J Integr Plant Biol 2024, 66 (3): 303-329.  
doi: 10.1111/jipb.13599
Abstract (Browse 77)  |   Save
Excess soil salinity affects large regions of land and is a major hindrance to crop production worldwide. Therefore, understanding the molecular mechanisms of plant salt tolerance has scientific importance and practical significance. In recent decades, studies have characterized hundreds of genes associated with plant responses to salt stress in different plant species. These studies have substantially advanced our molecular and genetic understanding of salt tolerance in plants and have introduced an era of molecular design breeding of salt-tolerant crops. This review summarizes our current knowledge of plant salt tolerance, emphasizing advances in elucidating the molecular mechanisms of osmotic stress tolerance, salt-ion transport and compartmentalization, oxidative stress tolerance, alkaline stress tolerance, and the trade-off between growth and salt tolerance. We also examine recent advances in understanding natural variation in the salt tolerance of crops and discuss possible strategies and challenges for designing salt stress-resilient crops. We focus on the model plant Arabidopsis (Arabidopsis thaliana) and the four most-studied crops: rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), and soybean (Glycine max).
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The BTB/TAZ domain-containing protein CmBT1-mediated CmANR1 ubiquitination negatively regulates root development in chrysanthemum
Lian‐Da Du, Zhang‐Ji Guan, Yan‐Hong Liu, Hui‐Dong Zhu, Quan Sun, Da‐Gang Hu and Cui‐Hui Sun
J Integr Plant Biol 2024, 66 (2): 285-299.  
DOI: 10.1111/jipb.13619
Abstract (Browse 65)  |   Save
Roots are fundamental for plants to adapt to variable environmental conditions. The development of a robust root system is orchestrated by numerous genetic determinants and, among them, the MADS-box gene ANR1 has garnered substantial attention. Prior research has demonstrated that, in chrysanthemum, CmANR1 positively regulates root system development. Nevertheless, the upstream regulators involved in the CmANR1-mediated regulation of root development remain unidentified. In this study, we successfully identified bric-a-brac, tramtrack and broad (BTB) and transcription adapter putative zinc finger (TAZ) domain protein CmBT1 as the interacting partner of CmANR1 through a yeast-two-hybrid (Y2H) screening library. Furthermore, we validated this physical interaction through bimolecular fluorescence complementation and pull-down assays. Functional assays revealed that CmBT1 exerted a negative influence on root development in chrysanthemum. In both in vitro and in vivo assays, it was evident that CmBT1 mediated the ubiquitination of CmANR1 through the ubiquitin/26S proteasome pathway. This ubiquitination subsequently led to the degradation of the CmANR1 protein and a reduction in the transcription of CmANR1-targeted gene CmPIN2, which was crucial for root development in chrysanthemum. Genetic analysis suggested that CmBT1 modulated root development, at least in part, by regulating the level of CmANR1 protein. Collectively, these findings shed new light on the regulatory role of CmBT1 in degrading CmANR1 through ubiquitination, thereby repressing the expression of its targeted gene and inhibiting root development in chrysanthemum.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple
Jian‐Ping An, Rui‐Rui Xu, Xiao‐Na Wang, Xiao‐Wei Zhang, Chun‐Xiang You and Yuepeng Han
J Integr Plant Biol 2024, 66 (2): 265-284.  
DOI: 10.1111/jipb.13608
Abstract (Browse 48)  |   Save
Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals. The positive regulators of anthocyanin biosynthesis have been reported, whereas the anthocyanin repressors have been neglected. Although the signal transduction pathways of gibberellin (GA) and jasmonic acid (JA) and their regulation of anthocyanin biosynthesis have been investigated, the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated. In this study, we identified the anthocyanin repressor MdbHLH162 in apple and revealed its molecular mechanism of regulating anthocyanin biosynthesis by integrating the GA and JA signals. MdbHLH162 exerted passive repression by interacting with MdbHLH3 and MdbHLH33, which are two recognized positive regulators of anthocyanin biosynthesis. MdbHLH162 negatively regulated anthocyanin biosynthesis by disrupting the formation of the anthocyanin-activated MdMYB1-MdbHLH3/33 complexes and weakening transcriptional activation of the anthocyanin biosynthetic genes MdDFR and MdUF3GT by MdbHLH3 and MdbHLH33. The GA repressor MdRGL2a antagonized MdbHLH162-mediated inhibition of anthocyanins by sequestering MdbHLH162 from the MdbHLH162-MdbHLH3/33 complex. The JA repressors MdJAZ1 and MdJAZ2 interfered with the antagonistic regulation of MdbHLH162 by MdRGL2a by titrating the formation of the MdRGL2a-MdbHLH162 complex. Our findings reveal that MdbHLH162 integrates the GA and JA signals to negatively regulate anthocyanin biosynthesis. This study provides new information for discovering more anthocyanin biosynthesis repressors and explores the cross-talk between hormone signals.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Knockout of a rice K5.2 gene increases Ca accumulation in the grain
Peitong Wang, Naoki Yamaji, Namiki Mitani‐Ueno, Jun Ge and Jian Feng Ma
J Integr Plant Biol 2024, 66 (2): 252-264.  
DOI: 10.1111/jipb.13587
Abstract (Browse 63)  |   Save
Rice is a staple food for half of the world's population, but it is a poor dietary source of calcium (Ca) due to the low concentration. It is an important issue to boost Ca concentration in this grain to improve Ca deficiency risk, but the mechanisms underlying Ca accumulation are poorly understood. Here, we obtained a rice (Oryza sativa) mutant with high shoot Ca accumulation. The mutant exhibited 26%–53% higher Ca in shoots than did wild-type rice (WT) at different Ca supplies. Ca concentration in the xylem sap was 36% higher in the mutant than in the WT. There was no difference in agronomic traits between the WT and mutant, but the mutant showed 25% higher Ca in the polished grain compared with the WT. Map-based cloning combined with a complementation test revealed that the mutant phenotype was caused by an 18-bp deletion of a gene, OsK5.2, belonging to the Shaker-like K+ channel family. OsK5.2 was highly expressed in the mature region of the roots and its expression in the roots was not affected by Ca levels, but upregulated by low K. Immunostaining showed that OsK5.2 was mainly expressed in the pericycle of the roots. Taken together, our results revealed a novel role for OsK5.2 in Ca translocation in rice, and will be a good target for Ca biofortification in rice.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22