-
National Maize Improvement Center of China
China Agricultural University
Tel.(Fax): +86-10-62734660
E-mail: ft55@cau.edu.cn
Area of expertise: Crop; maize; teosinte; domestication; adaptation; selection; plant architecture; flowering time; QTL; cloning
Selected Publications:
Sun, H., Wang, C., Chen, X., Liu, H., Huang, Y., Li, S., Dong, Z., Zhao, X., Tian, F., and Jin, W. (2020). dlf1 promotes floral transition by directly activating ZmMADS4 and ZmMADS67 in the maize shoot apex. New Phytol. 228:1386–1400.
Tian, J., Wang, C., Xia, J., Wu, L., Xu, G., Wu, W., Li, D., Qin, W., Han, X., Chen, Q., Jin, W., and Tian, F. (2019). Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science. 365: 658–664.
Xu, G., Cao, J., Wang, X., Chen, Q., Jin, W., Li, Z., and Tian, F. (2019). Evolutionary metabolomics identifies substantial metabolic divergence between maize and its wild ancestor, teosinte. Plant Cell. 31: 1990–2009.
Liang, Y., Liu, Q., Wang, X., Huang, C., Xu, G., Hey, S., Lin, H.Y., Li, C., Xu, D., Wu, L., Wang, C., Wu, W., Xia, J., Han, X., Lu, S., Lai, J., Song, W., Schnable, P.S., and Tian, F. (2019). ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol. 221: 2335–2347.
Guo, L., Wang, X., Zhao, M., Huang, C., Li, C., Li, D., Yang, C.J,, York, A.M., Xue, W., Xu, G., Liang, Y., Chen, Q., Doebley, J.F., and Tian, F. (2018). Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation. Curr. Biol. 8: 3005–3015.
Chen, Q., Han, Y., Liu, H., Wang, X., Sun, J., Zhao, B., Li, W., Tian, J., Liang, Y., Yan, J., Yang, X., and Tian, F. (2018). Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize. Plant Cell. 30: 1404–1423.
Huang, C., Sun, H., Xu, D., Chen, Q., Liang, Y., Wang, X., Xu, G., Tian, J., Wang, C., Li, D., Wu, L., Yang, X., Jin, W., Doebley, J.F., and Tian, F. (2018). ZmCCT9 enhances maize adaptation to higher latitudes. Proc. Natl. Acad. Sci. USA 115: E334–E341.
Wang, X., Chen, Q., Wu, Y., Lemmon, Z.H., Xu, G., Huang, C., Liang, Y., Xu, D., Li, D., Doebley, J.F., and Tian, F. (2018). Genome-wide analysis of transcriptional variability in a large maize-teosinte population. Mol. Plant 11: 443–459.
Xu, D., Wang, X., Huang, C., Xu, G., Liang, Y., Chen, Q., Wang, C., Li, D., Tian, J., Wu, L., Wu, Y., Guo, L., Wang, X., Wu, W., Zhang, W., Yang, X., and Tian, F. (2017). Glossy15 plays an important role in the divergence of the vegetative transition between maize and Its progenitor, teosinte. Mol. Plant 10: 1579–1583.
Xu, G., Wang, X., Huang, C., Xu, D., Li, D., Tian, J., Chen, Q., Wang, C., Liang, Y., Wu, Y., Yang, X., and Tian, F. (2017). Complex genetic architecture underlies maize tassel domestication. New Phytol. 214: 852–864.
Li, D., Wang, X., Zhang, X., Chen, Q., Xu, G., Xu, D., Wang, C., Liang, Y., Wu, L., Huang, C., Tian, J., Wu, Y., and Tian, F. (2016). The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytol. 210: 256–268.
Huang, C., Chen, Q., Xu, G., Xu, D., Tian, J., and Tian, F. (2015). Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. J. Integr. Plant Biol. 58: 81–90. •
For Upcoming Special lssue:

