J Integr Plant Biol. ›› 1966, Vol. 14 ›› Issue (1): -.

• Research Articles •    

Histochemical Observations on the Distribution of Adenosine Triphosphatase in Phloem and Motor Organs in Higher Plants

Kuo Chi-fang and Lou Cheng-hou   

Abstract: In a previous communication (Kuo 1964), it was shown by histochemical means that the phloem of cucurbit, as compared with the ground parenchyma, is particularly rich in adenosine triphosphatase (ATPase). A concurrent research by Yen et al. (1965) has succeeded in actually extracting from the vascular bundle of tobacco a crude protein fraction which not only possesses high ATPase activity, but also exhibits viscosity changes on addition of ATP or AMP. Such properties have been known to be characteristic of the contractile proteins constituting the muscle in animals. Although little is known about the actual role played in food transport by the living tissues in phloem, evidence has been accumulating that the active participation of the protoplasm in the phloem is necessary to facilitate sap movement. All these results have tempted us to think that higher plants, just like animals, also derive the energy required for performing mechanical work directly from ATP through the mediation of the contractile protein which is the ATPase itself. Accordingly, the present investigation is engaged in further histochemical observations to locate more precisely ATPase in the sieve element and to map out the distribution of the enzyme in various motor organs of higher plants, with the purpose in mind to see whether the map of enzyme distribution in the tissue has anything to do with its peculiar way of movement. 1. Presence of ATPase in the slime body of the functioning sieve element. In the functioning sieve element, high ATPase activity is displayed at the slime body and the connecting strands traversing the pores of the sieve plate (Plate Ⅰ, figs. 2, 3 & 4). However, as the pores of the sieve plate are partially blocked by the callose, the enzyme reaction becomes lessened. If the plate is completely covered by the callose pad, none could be detected. Since the slime body has been claimed by many workers to be pro- teinaceous in nature (cf. Esau 1950), there should be no surprise that it also possesses enzyme activity and contractile action. This seems to indicate that the slime body and the connecting strands are not mere hindrance to the sap flow but may actively participate in propelling the translocation stream. The fact that the intense ATPase reaction is given in the companion cell (Plate I, figs. 1 & 3) is in conformity with the common notion that the cell is actively involved in the normal functioning of phloem. 2. Enzyme distribution in various motor organs of different sensitivity. The ATPase content in the various motor organs (pulvinus, stamen, tendril, etc.) of different sensitivity has been compared histochemically, ranging from. 1) the highly sensitive organs; e.g. the pulvinus of Mimosa pudica (Plate Ⅱ, fig. 5) and of Oxalis piota (Plate Ⅱ, fig. 6), the stamen of Berberis Watsonae (Plate Ⅲ, fig. 10), the young tendril of Cucurbita maxima Duchesne and Vitis vinifera (Plate Ⅲ, figs. 11 & 12); 2) the moderately sensitive organs; e.g. the pulvinus of Sesbania cannabina (Plate Ⅱ, fig. 8); 3) the feebly sensitive or insensitive organs, e.g. the pulvinus of Robinia pseudoacacia (Plate Ⅱ, fig. 7), the stamen of Brassica campestris var. oleifera (Plate Ⅲ, fig. 9). From the results, it can be seen that the higher the sensitivity of the organ, the greater its enzyme activity. In addition to the morphological assymetry which is typical of plant motor organs, there also exists a physiological gradient, as evidenced by the uneven distribution of ATPase, usually being more intense on the more irritable side. The claim made recently by Aimi (1963) and others that the sudden collapse of the pulvinus of Mimosa on stimulation is not a direct result of the loss of turgidity as is generally assumed, but an immediate manifestation of the active vacuolar contraction in the motor cells is supported by the high ATPase content in the motor cells in our investigation.

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22