J Integr Plant Biol. ›› 1998, Vol. 40 ›› Issue (3): -.

• Research Articles •    

Transgenic Tobacco Plants with a Fully Synthesized GFM CryIA Gene Provide Effective Tobacco Bollworm (Heliothis armigera) Control

HUANG Qi-Man, MAO Li-Qun, HUANG Wei-Hong and GUO San-Dui   

Abstract: GFM CrylA gene is a fully modified synthetic gene derived from insecticidal crystal prorein gene of Bacillus thuringiensis Berliner (Bt). It was synthesized based on the codon usage of plant genes instead of changing the primary sequences of amino acids of insecticidal crystal protein (ICP) gene of Bacillus thuringiensis Htibner. To test the function of the synthetic GFM CrylA gene, we introduced the GFM CrylA gene into tobacco plant cells via an Agrobacterium tumefacieus (Smith et Townsedn) Conn binary vector system. As expected, the GFM CrylA gene is expressed under control of the cauliflower mosaic virus (CaMV) 35S promoter and allows efficient production of lepidopteran insectspecific toxic proteins in the transformed tobacco plants. Bioassays using transgenic tobacco plants with tobacco bollworm showed that the transgenic tobacco plants expressing proteins of GFM CrylA gene had effective control to tobacco bollworm. In this paper the authors firstly report the complete synthesis of GFM CryIA gene and the construction of plant expression vector pGBI4AB. The authors performed introduction of the synthetic GFM CrylA gene into the tobacco plants, and the integration of GFM CrylA gene into tobacco genome was confirmed by Southern blot analysis of the tobacco genomic DNA. The gene was efficiently expressed in the transgenic tobacco plants and effective tobacco bollworm control was verified by the insect-bioassays.

Key words: GFM CrylA gene, Transgenic tobacco plants, Insect-resistance

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q