J Integr Plant Biol. ›› 2007, Vol. 49 ›› Issue (4): -.DOI: 10.1111/j.1744-7909.2007.00435.x

• Development & Photosynthesis •    

Novel Evidence for a Reversible Dissociation of Light-harvesting Complex II from Photosystem II Reaction Center Complex Induced by Saturating Light Illumination in Soybean Leaves

Yi Liao and Da-Quan Xu   

Abstract: After saturating light illumination for 3 h the potential photochemical efficiency of photosystem II (PSII) (Fv/Fm, the ratio of variable to maximal fluorescence) decreased markedly and recovered basically to the level before saturating light illumination after dark recovery for 3爃 in both soybean and wheat leaves, indicating that the decline in Fv/Fm is a reversible down-regulation. Also, the saturating light illumination led to significant decreases in the low temperature (77 K) chlorophyll fluorescence parameters F685 (chlorophyll a fluorescence peaked at 685 nm ) and F685/F735 (F735, chlorophyll a fluorescence peaked at 735 nm) in soybean leaves but not in wheat leaves. Moreover, trypsin (a protease) treatment resulted in a remarkable decrease in the amounts of PsbS protein (a nuclear gene psbS-encoded 22 kDa protein) in the thylakoids from saturating light-illuminated (SI), but not in those from dark-adapted (DT) and dark-recovered (DRT) soybean leaves. However, the treatment did not cause such a decrease in amounts of the PsbS protein in the thylakoids from saturating light-illuminated wheat leaves. These results support the conclusion that saturating light illumination induces a reversible dissociation of some light-harvesting complex II (LHCII) from PSII reaction center complex in soybean leaf but not in wheat leaf.

Key words: chlorophyll fluorescence, light-harvesting complex II, PsbS protein, reversible dissociation, soybean, trypsin.

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q