J Integr Plant Biol. ›› 2003, Vol. 45 ›› Issue (4): 488-493.

• Research Articles • Previous Articles     Next Articles

Distance-Dependent Long-Range Electron Transfer in Protein: a Case Study of Photosynthetic Bacterial Light-Harvesting Antenna Complex LH2 Assembled on TiO2 Nanoparticle by Femto-Second Time-Resolved Spectroscopy

WENG Yu-Xiang, ZHANG Lei, YANG Jian, QUAN Dong-Hui, WANG Li, YANG Guo-Zhen, FUJII Ritsuko, KOYAMA Yasushi, ZHANG Jian-Ping, FENG Juan, YU Jun-Hua, ZHANG Bao-Wen   

  • Published:2003-04-15

Abstract:

The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna complex assembled onto TiO2 nanoparticle with an average size of 8 nm in diameter. Crystal structure shows that photosynthetic bacterial antenna complex LH2 has a ring-like structure composed by α- and β-apoprotein helices. The α- and β-transmembrance helices construct two concentric cylinders with pigments bacteriochlorophyll a (Bchla) and carotenoid (Car) buried inside the protein. We attempt to insert TiO2 nanoparticle into the cavity of the inner cylindrical hollow of LH2 to investigate the nature of the electron transfer between the excited-state Bchl a and the TiO2 nanoparticle. A significant decrease in the ground state bleaching recovery time constant for Bchl a at 850 nm (B850) in respect to that of the Bchl a in free LH2 has been observed. By using the relation of distance-dependent long-range electron transfer rate in protein, the distance between the donor B850 and the acceptor TiO2 nanoparticle has been estimated, which is about 0.6 nm. The proposed method of assembling proteins onto wide-gap semiconductor nanoparticle can be a promising way to determine the role of the protein playing in biological electron transfer processes. Key words: TiO2 nanoparticle; LH2; time-resolved spectroscopy; charge transfer; energy transfer; protein

应用飞秒时间分辨瞬态吸收光谱研究蛋白质中距离相关长程电荷转移:光合细菌天线复合体LH2 与TiO2纳米颗粒超分子组装体个例初探
翁羽翔  张 蕾 杨 健  全冬晖 汪力  杨国桢  藤井律子 小山泰  张建平 冯娟  余军华 张宝文

(1.  中国科学院物理研究所,北京100080;2.  日本关西学院大学理学院化学系,日本兵库县三田市学园2-669-1337;
3. 中国科学院化学研究所,北京100080;4 .中国科学院理化技术研究所,北京100101)

摘要:蛋白质在生物体内电荷转移过程中所起的作用迄今仍然是一个有争议的问题。其争论焦点是蛋白质在生物电荷转移过程中是否提供特殊的电子传递通道或者是仅仅作为普通的有机介质。应用飞秒时间分辨瞬态吸收光谱研究由光合细菌天线分子和平均粒径为 8nm的TiO2 组装而成的超分子系统中长程电荷转移。晶体结构研究表明 ,光合细菌天线分子具有由多个α- 脱辅基和 β- 脱辅基蛋白跨膜螺旋构成的双层空心柱面体结构 ,其中α- 脱辅基蛋白跨膜螺旋构成的小环状体套于 β- 脱辅基蛋白跨膜螺旋构成的大环状体中。小环状体的空腔直径约为 3.6nm。光合色素细菌叶绿素和 β_胡萝卜素分子处于两环之间。细菌叶绿素距离外周胞质膜最近 ,预计为 1nm。本研究试图将TiO2 纳米颗粒部分装入光合细菌膜蛋白的腔体中 ,探讨细菌叶绿素与TiO2 纳米颗粒间进行的光致长程电荷转移 ,进而揭示蛋白质在电荷转移过程中所起的作用。实验观察到细菌叶绿素B850在LH2 /TiO2 中的基态漂白恢复的时间常数明显地比在LH2中短 ,应用长程电荷转移模型 ,将蛋白质视为普通介电媒体 ,由电荷转移速率推算得到细菌叶绿素与TiO2 纳米颗粒最近表面的距离为 0 .6nm ,表明TiO2 纳米颗粒已经成功地部分装入光合细菌天线分子的空腔中。
 

关键词: 二氧化钛纳米颗粒;细菌天线叶绿素;时间分辨光谱;电荷转移;能量转移;蛋白质

通讯作者。Tel: 010-25649432; Fax: 010-82649451; E-mail: yxweng @ aphy.iphy. ac. cn。

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22