J Integr Plant Biol. ›› 2008, Vol. 50 ›› Issue (11): 1440-1451.DOI: 10.1111/j.1744-7909.2008.00756.x

• Research Articles • Previous Articles     Next Articles

Variation in Heat-shock Proteins and Photosynthetic Thermotolerance among Natural Populations of Chenopodium album L. from Contrasting Thermal Environments: Implications for Plant Responses to Global Warming

Deepak Barua, Scott A. Heckathorn and James S. Coleman   

  • Received:2008-05-02 Accepted:2008-07-02 Published:2008-11-11

Abstract: Production of heat-shock proteins (Hsps) is a key adaptation to acute heat stress and will be important in determining plant responses to climate change. Further, intraspecifc variation in Hsps, which will influence species-level response to global warming, has rarely been examined in naturally occurring plants. To understand intraspecific variation in plant Hsps and its relevance to global warming, we examined Hsp content and thermotolerance in five naturally occurring populations of Chenopodium album L. from contrasting thermal environments grown at low and high temperatures. As expected, Hsp accumulation varied between populations, but this was related more to habitat variability than to mean temperature. Unexpectedly, Hsp accumulation decreased with increasing variability of habitat temperatures. Hsp accumulation also decreased with increased experimental growth temperatures. Physiological thermotolerance was partitioned into basal and induced components. As with Hsps, induced thermotolerance decreased with increasing temperature variability. Thus, populations native to the more stressful habitats, or grown at higher temperatures, had lower Hsp levels and induced thermotolerance, suggesting a greater reliance on basal mechanisms for thermotolerance. These results suggest that future global climate change will differentially impact ecotypes within species, possibly by selecting for increased basal vs. inducible thermotolerance.

Key words: acclimation, photosynthesis, stress proteins, temperature

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22