-
Hebei University in Baoding
China
Tel.: 86-20-85283380; Fax: 86-20-85281829
E-mail: huilongdu@hbu.edu.cn
http://life.hbu.edu.cn/techer_show.asp?infoid=917
Area of expertise: Oat; genomics; population genetics; multiomics; functional omics; systems biology; biological development; stress response
Selected Publications:
Du, H.#, Yu, Y.#, Ma, Y.#, Gao, Q.#, Cao, Y.#, Chen, Z., Ma, B., Qi, M., Li, Y., Zhao, X., Wang, J., Liu, K., Qin, Peng., Yang, X., Zhu, L., Li, S.*, Liang, C.* (2017). Sequencing and de novo assembly of a near complete indica rice genome. Nature Commun. 8: 15324.
Du, H., Liang, C. (2019). Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads. Nature Commun. 10: 5360.
Liu, Y.#, Du, H.#, Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G., Zhang, H., Liu, Z., Shi, M., Huang, X., Li, Y., Zhang, M., Wang, Z., Zhu, B., Han, B., Liang, C.*, Tian, Z.* (2020). Pan-genome of wild and cultivated soybeans. Cell 182: 162-176.
Shen, C.#, Du, H.#, Chen, Z.#, Lu, H.#, Zhu, F., Chen, H., Meng, X., Liu, Q., Liu, P., Zheng, L., Li, X., Dong, J.*, Liang, C.*, Wang, T.* (2020). The Chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol. Plant 13: 1250-1261.
Qin, P.#*, Lu, H.#, Du, H.#, Wang, H.#, Chen, W.#, Chen, Z.#, He, Q., Ou, S., Zhang, H., Li, X., Li, X., Li, Y., Liao, Y., Gao, Q., Tu, B., Yuan, H., Ma, B., Wang, Y., Qian, Y., Fan, S., Li, W., Wang, J., He, M., Yin, J., Li, T., Jiang, N., Chen, X., Liang, C.*, Li, S.* (2021). Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184: 3542-3558
Yu, H.#, Lin, T.#, Meng, X.#, Du, H.#, Zhang, J.#, Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., Gao, Q., Liang, Y., Liu, X., Fan, Z., Liang, Y., Cheng, Z., Chen, M., Tian. Z., Wang, Y., Chu, C., Zuo, J., Wan, J., Qian, Q., Han, Bin., Zuccolo, A., Wing, R., Gao, C.*, Liang, C.*, Li, J.* (2021). A route to de novo domestication of wild allotetraploid rice. Cell 184: 1-15.
He Q.#, Ma D.#, Li W., Xing L., Zhang H., Wang Y., Du C., Li X., Jia Z., Li X., Liu J., Liu Z., Miao Y., Feng R., Lv Y., Wang M., Lu H., Li X., Xiao Y., Wang R., Liang H., Zhou Q., Zhang L.*, Liang C.*, Du H.* (2023) High-quality Fagopyrum esculentum genome provides insights into the flavonoid accumulation among different tissues and self-incompatibility. J. Integr. Plant Biol.
Shen, Y.#, Du, H.#, Liu, Y., Ni, L., Wang, Z., Liang, C.*, Tian, Z.* (2019). Update soybean Zhonghuang 13 genome to a golden reference. Sci. China Life Sci. 62: 1257-1260.
Xie, X.#, Du, H.#, Tang, H., Tang, J., Tan, X., Liu, W., Li, T., Lin, Z., Liang, C.*, Liu, Y.* (2020). A chromosome-level genome assembly of the wild rice Oryza rufipogon facilitates tracing the origins of Asian cultivated rice. Sci. China Life Sci. 64: 282-293.
Chen, Z., Li, X., Lu, H., Gao, Q., Du, H., Peng, H., Qin, P., Liang, C.* (2020). Genomic atlases of introgression and differentiation reveal breeding footprints in Chinese cultivated rice. J. Genet. Genomics 47: 637-649.
For Upcoming Special lssue:

