J Integr Plant Biol. ›› 2005, Vol. 47 ›› Issue (1): 107-115.DOI: 10.1111/j.1744-7909.2005.00013.x

• Research Articles • Previous Articles     Next Articles

Loss of Genetic Diversity of Domesticated Panax notoginseng F H Chen as Evidenced by ITS Sequence and AFLP Polymorphism: A Comparative Study with P. stipuleanatus H T Tsai et K M Feng

Shi-Liang ZHOU, Gao-Ming XIONG, Zhong-Yi LI and Jun WEN   

  • Published:2005-01-01

Abstract: In the present study, we evaluated the genetic diversity of Panax notoginseng F H Chen, a domesticated species, and P. stipuleanatus H T Tsai et K M Feng, an endangered wild species in southeastern Yunnan and adjacent areas in Vietnam, using sequences of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA and amplified fragment length polymorphism (AFLP) markers. Twenty-four accessions from three plantations of P. notoginseng and 51 samples from eight populations of P. stipuleanatus were assayed. A total of 694 bp of partial sequences of 18S, ITS1, 5.8S, ITS2, and partial sequences of 26S were obtained. No sequence variation was detected within P. notoginseng and nine sites (1.30%) were variable in P. stipuleanatus. Two-thirds of the variable sites were found between Langqiao and other populations. In P. notoginseng, four pairs of AFLP primer combinations generated 312 bands, of which 240 (76.9%) were polymorphic and 60.15% of the polymorphisms were harbored within plantations. Approximately 41.0% and 66.9% of bands were polymorphic in population D7 and 5589, respectively. In P. stipuleanatus, the same four primer combinations produced 346 bands, of which 334 (96.5%) were polymorphic and approximately 62.14% of polymorphisms were maintained within populations. Considerable variations were observed. The percentage of polymorphic bands ranged from 50.2% to 84.9% and the average over populations was 70.9%. Cluster analysis did not show correlation of genetic differentiation with the distinctive leaf morphology of P. stipuleanatus (i.e. one form with bipinnatifid leaflets and the other with undivided leaflets). Because over 40% of genetic variations were maintained among populations and because of the very restricted distribution of P. stipuleanatus, all natural populations of this species should be conserved in situ. Considering that there are variations in P. notoginseng within and among plantations, we suggest establishing a genetic resource conservation garden or reintroducing P. notoginseng into its native habitats in southwestern China. Such reintroduction should be carefully executed after large-scale screening of genetic variation within the species.

Key words: amplified fragment length polymorphism, Araliaceae, conservation genetics, internal transc-ribed spacer, Panax notoginseng F H Chen, P. stipuleanatus H T Tsai et K M Feng.

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2021 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q