J Integr Plant Biol. ›› 2008, Vol. 50 ›› Issue (6): 673-681.DOI: 10.1111/j.1744-7909.2008.00674.x

• Bioenergy Plants • Previous Articles     Next Articles

Is Mass-based Metabolism Rate Proportional to Surface Area in Plant Leaves? A Data Re-analysis

Dongmei Jin, Yiqiang Dai, Li Sun and Shucun Sun   

Abstract: We re-analyzed two large published databases on leaf traits of plant species from seven different biomes, and determined the scaling relationship between leaf metabolism rate (mass-based photosynthesis capacity, Amass, and mass-based dark respiration, Rdmass) and specific leaf area (SLA) across biomes, using a standardized major axis (SMA) method. Overall pooled data produced a scaling exponent of 1.33 for the relationship between Amass and SLA, significantly larger than 1.0; and 1.04 between Rdmass and SLA. The scaling exponent of the relationship between Amass and SLA ranged between 1.23 (in tropical forest) and 1.66 (in alpine biome), and it was significantly larger in alpine (1.66) and grass/meadow (1.52) biomes than in tropical forest (1.23) and wetland (1.27). The exponent of the relationship between Rdmass and SLA, however, was much smaller in wetland (1.05) than in temperate forest (1.29) and tropical rainforest (1.65). In general, the predicated universal scaling relationship that the mass-based metabolism rate should be proportional to surface area in organisms is not applicable at the leaf-level in plants. Rather, the large slope difference of the relationship between leaf metabolism rate and SLA found among biomes indicates that the strength of the selective forces driving the scaling relationship is different among the biomes. The result basically suggests the importance of increasing SLA to plant carbon gain in stressful environments and to carbon loss in favorable habitats, and therefore has an important implication for survival strategies of plants in different biomes.

Key words: biome, leaf, photosynthesis, plant, respiration, specific leaf area, scaling.

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22