J Integr Plant Biol. ›› 2007, Vol. 49 ›› Issue (12): 1726-1733.DOI: 10.1111/j.1744-7909.2007.00569.x

Special Issue: Plant Signal Transduction

• Omics & Epigenetics • Previous Articles     Next Articles

Efficiency for Gene Silencing Induction in Nicotiana Species by a Viral Satellite DNA Vector

You-Ping Xu, Lu-Ping Zheng, Qiu-Fang Xu, Chang-Chun Wang, Xue-Ping Zhou, Zu-Jian Wu and Xin-Zhong Cai   

Abstract: Virus-induced gene silencing (VIGS) is a useful technique for rapid plant gene function analysis. We recently reported a new VIGS vector modified from Tomato yellow leaf curl China virus (TYLCCNV) DNAβ (DNAmβ). In this study we compared in detail DNAmβ-induced gene silencing in four Nicotiana species including N. benthamiana, N. glutinosa, N. tabacum and N. paniculata. We found that DNAmβ-induced gene silencing in the four species was distinct in developing dynamics, tissue specificity, efficiency, and constancy in the plant life span. It was most efficient in N. benthamiana, where development of VIGS was most rapid, without tissue specificity and nearly 100% efficient. DNAmβ-induced gene silencing in N. glutinosa was also efficient despite being slightly less than in N. benthamiana. It initially occurred in veins, later was scattered to mesophyll, finally led to complete silencing in whole leaves. In both species, VIGS constantly expressed until the plants died. However, DNAmβ-mediated VIGS in the other two Nicotiana species, N. tabacum and N. paniculata, was significantly less efficient. It was strictly limited within the veins of the silenced leaves, and constantly occurred only over 3–4 weeks. The upper leaves that emerged later stopped showing the silencing phenotype. DNAmβ-induced gene silencing in N. benthamiana and N. glutinosa was not significantly influenced by the growth stage when the plants were agro-inoculated, and was not sensitive to high growth temperature up to 32 °C. Our results indicate that this system has great potential as a versatile VIGS system for routine functional analysis of genes in some Nicotiana species.

Key words: DNAβ, Nicotiana, tobacco rattle virus, tomato yellow leaf curl China virus, virus-induced gene silencing.

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q