J Integr Plant Biol. ›› 1999, Vol. 41 ›› Issue (3): -.
• Research Articles •
JIANG Ming-Yi
Abstract: The hydroxyl radical ('OH) is one of the roost reactive mdieales known to chemistry and is believed to be a major active free radicle responsible for modifications of macmmolecules and cellular damage. Two lines of evidence strongly indicate that 'OH radicals are generated in a Fenton-type Haber-Weiss reactions in plants subjected to water stress. Firstly, water stress causes an increase in the concentration of catalytic metals, which are critical for Fenton-like reactions to proceed in vivo. Furthermore, subrmillimolar concentrations of H2O2 and ascorbic acid(or O2- ) in the drought-stressed plants are large enough to support the Fentontype Haber-Weiss reactions. Secondly, there is oxidation of proteins and lipids in the drought-stressed plants; a process that requires a catalytic metal and that, at least for protein oxidation, is mediated by the 'OH radicals. Protein oxidation is thought to involve binding of metal ions to the proteins and subsequent site-specific attack by the 'OH radicals arising from the roetal-catalysed decomposition of H2O2. It has been proposed that protein oxidation may be a better index than lipid peroxidation because the latter fields many different products and these only appear after a lag period. The validity of malondialdehyde (MDA), an early product of lipid peroxidation, as an index of lipid peroxidation has been argued by the non-specific method of its measurement. The 'OH radicals are not the only necessary initiator for lipid peroxidation and lipid peroxidation is not usually involved in plants exposed to water stress.
Key words: Water stress, Hydroxyl radical('OH), Protein oxidation, Lipid peroxidation
JIANG Ming-Yi. Generation of Hydroxyl Radicals and Its Relation to Cellular Oxidative Damage in Plants Subjected to Water Stress[J]. J Integr Plant Biol., 1999, 41(3): -.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jipb.net/EN/
https://www.jipb.net/EN/Y1999/V41/I3/