Highlights
Please wait a minute...
For Selected: Toggle Thumbnails
  
Activation and suppression mechanisms of the NRG1 helper NLRs
Yu-Ru Wang, Ruize Zhang, Daowen Wang, Yong Wang, Zheng Qing Fu
J Integr Plant Biol 2025, 67 (8): 1985-1987.  
doi: 10.1111/jipb.13928
Abstract (Browse 121)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Plant synthetic biology-based biofortification, strategies and recent progresses
Kai Wang, Zhongchi liu
J Integr Plant Biol 2025, 67 (8): 1997-2004.  
doi: 10.1111/jipb.13934
Abstract (Browse 78)  |   Save
Hidden hunger, caused by chronic micronutrient deficiencies, affects billions of people worldwide and remains a critical public health issue despite progress in food production. Biofortification offers a promising solution by enhancing nutrient levels within plant tissues through traditional breeding or advanced biotechnologies. Recent advancements in plant synthetic biology have significantly improved biofortification strategies, enabling precise and targeted nutrient enrichment. This mini-review outlines five core strategies in synthetic biology-based biofortification: overexpression of endogenous biosynthetic genes, introduction of heterologous biosynthetic pathways, expression of nutrient-specific transporters, optimization of transcriptional regulation, and protein (directed) evolution. Vitamin B1 biofortification serves as a primary illustrative example due to its historical importance and ongoing relevance. Recent breakthroughs, particularly from Chinese research teams, are also highlighted. Together, these strategies offer transformative potential for addressing global nutritional challenges through precise, sustainable and innovative plant-based approaches.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Improving multiple disease resistance in wheat by using multitask kinase fusion proteins
Yamei Zhuang, Qiaoli Wang, Jianjun Liu, Daowen Wang, Guang Qi
J Integr Plant Biol 2025, 67 (7): 1689-1690.  
doi: 10.1111/jipb.13907
Abstract (Browse 113)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Rice E3 ubiquitin ligases balance immunity and yield through non-proteolytic ubiquitination
Yuqing Yan, Hui Wang, Yan Bi, Leeza Tariq, Fengming Song
J Integr Plant Biol 2025, 67 (5): 1199-1201.  
doi: 10.1111/jipb.13831
Abstract (Browse 126)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A synthetic biology approach for identifying de-SUMOylation enzymes of substrates
Junwen Huang, Junjie Huang, Jiayuan Wu, Mi Zhou, Siyi Luo, Jieming Jiang, Tongsheng Chen, Ling Shao, Jianbin Lai, Chengwei Yang
J Integr Plant Biol 2025, 67 (5): 1211-1213.  
doi: 10.1111/jipb.13838
Abstract (Browse 176)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
More than flowering: CONSTANS plays multifaceted roles in plant development and stress responses
Bin Yu, Yilong Hu, Xingliang Hou
J Integr Plant Biol 2025, 67 (3): 425-439.  
doi: 10.1111/jipb.13798
Abstract (Browse 210)  |   Save
Plants have evolved a remarkable ability to sense and respond to changes in photoperiod, allowing adjustments to their growth and development based on seasonal and environmental cues. The floral transition is a pivotal stage in plant growth and development, signifying a shift from vegetative to reproductive growth. CONSTANS (CO), a central photoperiodic response factor conserved in various plants, mediates day-length signals to control the floral transition, although its mechanisms of action vary among plants with different day-length requirements. In addition, recent studies have uncovered roles for CO in organ development and stress responses. These pleiotropic roles in model plants and crops make CO a potentially fruitful target for molecular breeding aimed at modifying crop agronomic traits. This review systematically traces research on CO, from its discovery and functional studies to the exploration of its regulatory mechanisms and newly discovered functions, providing important insight into the roles of CO and laying a foundation for future research.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
In vivo haploid induction in cauliflower, kale, and broccoli
Guixiang Wang, Mei Zong, Shuo Han, Hong Zhao, Mengmeng Duan, Xin Liu, Ning Guo, Fan Liu
J Integr Plant Biol 2024, 66 (9): 1823-1826.  
doi: 10.1111/jipb.13730
Abstract (Browse 267)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits
Shan Li, Yu Zhao, Pan Wu, Donald Grierson, Lei Gao
J Integr Plant Biol 2024, 66 (9): 1831-1863.  
doi: 10.1111/jipb.13739
Abstract (Browse 217)  |   Save
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Phase separation of S-RNase promotes self-incompatibility in Petunia hybrida
Huayang Tian, Hongkui Zhang, Huaqiu Huang, Yu'e Zhang and Yongbiao Xue
J Integr Plant Biol 2024, 66 (5): 986-1006.  
doi: 10.1111/jipb.13584
Abstract (Browse 305)  |   Save
Self-incompatibility (SI) is an intraspecific reproductive barrier widely present in angiosperms. The SI system with the broadest occurrence in angiosperms is based on an S-RNase linked to a cluster of multiple S-locus F-box (SLF) genes found in the Solanaceae, Plantaginaceae, Rosaceae, and Rutaceae. Recent studies reveal that non-self S-RNase is degraded by the Skip Cullin F-box (SCF)SLF-mediated ubiquitin–proteasome system in a collaborative manner in Petunia, but how self-RNase functions largely remains mysterious. Here, we show that S-RNases form S-RNase condensates (SRCs) in the self-pollen tube cytoplasm through phase separation and the disruption of SRC formation breaks SI in self-incompatible Petunia hybrida. We further find that the pistil SI factors of a small asparagine-rich protein HT-B and thioredoxin h together with a reduced state of the pollen tube all promote the expansion of SRCs, which then sequester several actin-binding proteins, including the actin polymerization factor PhABRACL, the actin polymerization activity of which is reduced by S-RNase in vitro. Meanwhile, we find that S-RNase variants lacking condensation ability fail to recruit PhABRACL and are unable to induce actin foci formation required for pollen tube growth inhibition. Taken together, our results demonstrate that phase separation of S-RNase promotes SI response in P. hybrida, revealing a new mode of S-RNase action.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Maize gets an iron boost: Biofortification breakthrough holds promise to combat iron deficiency
Sunil Kumar Sahu
J Integr Plant Biol 2024, 66 (4): 635-637.  
doi: 10.1111/jipb.13623
Abstract (Browse 228)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
PROMOTIONS
Scan the QR code to view JIPB on WeChat
Follow us at @JIPBio on Twitter

PUBLISHED BY

ACKNOWLEDGEMENTS

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22