Grain quality

    Default Latest Most Read
    Please wait a minute...
    For Selected: Toggle Thumbnails
      
    The nodulation and nyctinastic leaf movement is orchestrated by clock gene LHY in Medicago truncatula
    Yiming Kong, Lu Han, Xiu Liu, Hongfeng Wang, Lizhu Wen, Xiaolin Yu, Xiaodong Xu, Fanjiang Kong, Chunxiang Fu, Kirankumar S. Mysore, Jiangqi Wen and Chuanen Zhou
    J Integr Plant Biol 2020, 62 (12): 1880-1895.  
    DOI: 10.1111/jipb.12999
    Abstract (Browse 460)  |   Save

    As sessile organisms, plants perceive, respond, and adapt to the environmental changes for optimal growth and survival. The plant growth and fitness are enhanced by circadian clocks through coordination of numerous biological events. In legume species, nitrogen‐fixing root nodules were developed as the plant organs specialized for symbiotic transfer of nitrogen between microsymbiont and host. Here, we report that the endogenous circadian rhythm in nodules is regulated by MtLHY in legume species Medicago truncatula. Loss of function of MtLHY leads to a reduction in the number of nodules formed, resulting in a diminished ability to assimilate nitrogen. The operation of the 24‐h rhythm in shoot is further influenced by the availability of nitrogen produced by the nodules, leading to the irregulated nyctinastic leaf movement and reduced biomass in mtlhy mutants. These data shed new light on the roles of MtLHY in the orchestration of circadian oscillator in nodules and shoots, which provides a mechanistic link between nodulation, nitrogen assimilation, and clock function.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    N4‐methylcytidine ribosomal RNA methylation in chloroplasts is crucial for chloroplast function, development, and abscisic acid response in Arabidopsis
    Le Nguyen Tieu Ngoc, Su Jung Park, Trinh Thi Huong, Kwang Ho Lee and Hunseung Kang
    J Integr Plant Biol 2021, 63 (3): 570-582.  
    doi: 10.1111/jipb.13009
    Abstract (Browse 296)  |   Save
    Although the essential role of messenger RNA methylation in the nucleus is increasingly understood, the nature of ribosomal RNA (rRNA) methyltransferases and the role of rRNA methylation in chloroplasts remain largely unknown. A recent study revealed that CMAL (for Chloroplast mr aW‐ Like) is a chloroplast‐localized rRNA methyltransferase that is responsible for N4‐methylcytidine (m4C) in 16S chloroplast rRNA in Arabidopsis thaliana. In this study, we further examined the role of CMAL in chloroplast biogenesis and function, development, and hormone response. The cmal mutant showed reduced chlorophyll biosynthesis, photosynthetic activity, and growth‐defect phenotypes, including severely stunted stems, fewer siliques, and lower seed yield. The cmal mutant was hypersensitive to chloroplast translation inhibitors, such as lincomycin and erythromycin, indicating that the m4C‐methylation defect in the 16S rRNA leads to a reduced translational activity in chloroplasts. Importantly, the stunted stem of the cmal mutant was partially rescued by exogenous gibberellic acid or auxin. The cmal mutant grew poorer than wild type, whereas the CMAL‐overexpressing transgenic Arabidopsis plants grew better than wild type in the presence of abscisic acid. Altogether, these results indicate that CMAL is an indispensable rRNA methyltransferase in chloroplasts and is crucial for chloroplast biogenesis and function, photosynthesis, and hormone response during plant growth and development.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency
    Changquan Zhang, Yong Yang, Shengjie Chen, Xueju Liu, Jihui Zhu, Lihui Zhou, Yan Lu, Qianfeng Li, Xiaolei Fan, Shuzhu Tang, Minghong Gu and Qiaoquan Liu
    J Integr Plant Biol 2021, 63 (5): 889-901.  
    doi: 10.1111/jipb.13010
    Abstract (Browse 477)  |   Save
    In rice (Oryza sativa), amylose content (AC) is the major factor that determines eating and cooking quality (ECQ). The diversity in AC is largely attributed to natural allelic variation at the Waxy (Wx) locus. Here we identified a rare Wx allele, Wxmw, which combines a favorable AC, improved ECQ and grain transparency. Based on a phylogenetic analysis of Wx genomic sequences from 370 rice accessions, we speculated that Wxmw may have derived from recombination between two important natural Wx alleles, Wxin and Wxb. We validated the effects of Wxmw on rice grain quality using both transgenic lines and near‐isogenic lines (NILs). When introgressed into the japonica Nipponbare (NIP) background, Wxmw resulted in a moderate AC that was intermediate between that of NILs carrying the Wxb allele and NILs with the Wxmp allele. Notably, mature grains of NILs fixed for Wxmw had an improved transparent endosperm relative to soft rice. Further, we introduced Wxmw into a high‐yielding japonica cultivar via molecular marker‐assisted selection: the introgressed lines exhibited clear improvements in ECQ and endosperm transparency. Our results suggest that Wxmw is a promising allele to improve grain quality, especially ECQ and grain transparency of high‐yielding japonica cultivars, in rice breeding programs.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    The origin of Wxla provides new insights into the improvement of grain quality in rice
    Hao Zhou, Duo Xia, Da Zhao, Yanhua Li, Pingbo Li, Bian Wu, Guanjun Gao, Qinglu Zhang, Gongwei Wang, Jinghua Xiao, Xianghua Li, Sibin Yu, Xingming Lian and Yuqing He
    J Integr Plant Biol 2021, 63 (5): 878-888.  
    doi: 10.1111/jipb.13011
    Abstract (Browse 455)  |   Save
    Appearance and taste are important factors in rice (Oryza sativa) grain quality. Here, we investigated the taste scores and related eating‐quality traits of 533 diverse cultivars to assess the relationships between—and genetic basis of—rice taste and eating‐quality. A genome‐wide association study highlighted the Wx gene as the major factor underlying variation in taste and eating quality. Notably, a novel waxy (Wx) allele, Wxla, which combined two mutations from Wxb and Wxin, exhibited a unique phenotype. Reduced GBSSI activity conferred Wxla rice with both a transparent appearance and good eating quality. Haplotype analysis revealed that Wxla was derived from intragenic recombination. In fact, the recombination rate at the Wx locus was estimated to be 3.34 kb/cM, which was about 75‐fold higher than the genome‐wide mean, indicating that intragenic recombination is a major force driving diversity at the Wx locus. Based on our results, we propose a new network for Wx evolution, noting that new Wx alleles could easily be generated by crossing genotypes with different Wx alleles. This study thus provides insights into the evolution of the Wx locus and facilitates molecular breeding for quality in rice.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms
    He Zhao, Cui-Cui Yin, Biao Ma, Shou-Yi Chen and Jin-Song Zhang
    J Integr Plant Biol 2021, 63 (1): 102-125.  
    doi: 10.1111/jipb.13028
    Abstract (Browse 449)  |   Save
    Ethylene is a gaseous hormone which plays important roles in both plant growth and development and stress responses. Based on studies in the dicot model plant species Arabidopsis, a linear ethylene signaling pathway has been established, according to which ethylene is perceived by ethylene receptors and transduced through CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) and ETHYLENE‐INSENSITIVE 2 (EIN2) to activate transcriptional reprogramming. In addition to this canonical signaling pathway, an alternative ethylene receptor‐mediated phosphor‐relay pathway has also been proposed to participate in ethylene signaling. In contrast to Arabidopsis, rice, a monocot, grows in semiaquatic environments and has a distinct plant structure. Several novel regulators and/or mechanisms of the rice ethylene signaling pathway have recently been identified, indicating that the ethylene signaling pathway in rice has its own unique features. In this review, we summarize the latest progress and compare the conserved and divergent aspects of the ethylene signaling pathway between Arabidopsis and rice. The crosstalk between ethylene and other plant hormones is also reviewed. Finally, we discuss how ethylene regulates plant growth, stress responses and agronomic traits. These analyses should help expand our knowledge of the ethylene signaling mechanism and could further be applied for agricultural purposes.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Enhanced production of seed oil with improved fatty acid composition by overexpressing NAD+-dependent glycerol-3-phosphate dehydrogenase in soybean
    Ying Zhao, Pan Cao, Yifan Cui, Dongxu Liu, Jiapeng Li, Yabin Zhao, Siqi Yang, Bo Zhang, Runnan Zhou, Minghao Sun, Xuetian Guo, Mingliang Yang, Dawei Xin, Zhanguo Zhang, Xin Li, Chen Lv, Chunyan Liu, Zhaoming Qi, Jingyu Xu, Xiaoxia Wu and Qingshan Chen
    J Integr Plant Biol 2021, 63 (6): 1036-1053.  
    doi: 10.1111/jipb.13094
    Abstract (Browse 324)  |   Save
    There is growing interest in expanding the production of soybean oils (mainly triacylglycerol, or TAG) to meet rising feed demand and address global energy concerns. We report that a plastid-localized glycerol-3-phosphate dehydrogenase (GPDH), encoded by GmGPDHp1 gene, catalyzes the formation of glycerol-3-phosphate (G3P), an obligate substrate required for TAG biosynthesis. Overexpression of GmGPDHp1 increases soybean seed oil content with high levels of unsaturated fatty acids (FAs), especially oleic acid (C18:1), without detectably affecting growth or seed protein content or seed weight. Based on the lipidomic analyses, we found that the increase in G3P content led to an elevated diacylglycerol (DAG) pool, in which the Kennedy pathway-derived DAG was mostly increased, followed by PC-derived DAG, thereby promoting the synthesis of TAG containing relatively high proportion of C18:1. The increased G3P levels induced several transcriptional alterations of genes involved in the glycerolipid pathways. In particular, genes encoding the enzymes responsible for de novo glycerolipid synthesis were largely upregulated in the transgenic lines, in-line with the identified biochemical phenotype. These results reveal a key role for GmGPDHp1-mediated G3P metabolism in enhancing TAG synthesis and demonstrate a strategy to modify the FA compositions of soybean oils for improved nutrition and biofuel.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Novel Wx alleles generated by base editing for improvement of rice grain quality
    Xiaorui Huang, Fei Su, Sheng Huang, Fating Mei, Xiaomu Niu, Changle Ma, Hui Zhang, Xiaoguo Zhu, Jian‐Kang Zhu and Jinshan Zhang
    J Integr Plant Biol 2021, 63 (9): 1632-1638.  
    doi: 10.1111/jipb.13098
    Abstract (Browse 343)  |   Save
    Amylose content (AC), which is regulated by the Waxy (Wx) gene, is a major indicator of eating and cooking quality (ECQ) in rice (Oryza sativa). Thus far, only a limited number of mutations in the N-terminal domain of Wx were found to have a major impact on the AC of rice grains and no mutations with such effects were reported for other regions of the Wx protein. Here, nucleotide substitutions in the middle region of Wx were generated by adenine and cytosine base editors. The nucleotide substitutions led to changes in 15 amino acid residues of Wx, and a series of novel Wx alleles with ACs of 0.3%–29.43% (wild type with AC of 19.87%) were obtained. Importantly, the waxyabe2 allele showed a “soft rice” AC, improved ECQ, favorable appearance, and no undesirable agronomic traits. The transgenes were removed from the waxyabe2 progeny, generating a promising breeding material for improving rice grain quality.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22