Grain quality
As sessile organisms, plants perceive, respond, and adapt to the environmental changes for optimal growth and survival. The plant growth and fitness are enhanced by circadian clocks through coordination of numerous biological events. In legume species, nitrogen‐fixing root nodules were developed as the plant organs specialized for symbiotic transfer of nitrogen between microsymbiont and host. Here, we report that the endogenous circadian rhythm in nodules is regulated by MtLHY in legume species Medicago truncatula. Loss of function of MtLHY leads to a reduction in the number of nodules formed, resulting in a diminished ability to assimilate nitrogen. The operation of the 24‐h rhythm in shoot is further influenced by the availability of nitrogen produced by the nodules, leading to the irregulated nyctinastic leaf movement and reduced biomass in mtlhy mutants. These data shed new light on the roles of MtLHY in the orchestration of circadian oscillator in nodules and shoots, which provides a mechanistic link between nodulation, nitrogen assimilation, and clock function.
Grain number is a flexible trait and contributes significantly to grain yield. In rice, the zinc finger transcription factor DROUGHT AND SALT TOLERANCE (DST) controls grain number by directly regulating cytokinin oxidase/dehydrogenase 2 (OsCKX2) expression. Although specific upstream regulators of the DST–OsCKX2 module have been identified, the mechanism employed by DST to regulate the expression of OsCKX2 remains unclear. Here, we demonstrate that DST-interacting protein 1 (DIP1), known as Mediator subunit OsMED25, acts as an interacting coactivator of DST. Phenotypic analyses revealed that OsMED25-RNAi and the osmed25 mutant plants exhibited enlarged panicles, with enhanced branching and spikelet number, similar to the dst mutant. Genetic analysis indicated that OsMED25 acts in the same pathway as the DST–OsCKX2 module to regulate spikelet number per panicle. Further biochemical analysis showed that OsMED25 physically interacts with DST at the promoter region of OsCKX2, and then recruits RNA polymerase II (Pol II) to activate OsCKX2 transcription. Thus, OsMED25 was involved in the communication between DST and Pol II general transcriptional machinery to regulate spikelet number. In general, our findings reveal a novel function of OsMED25 in DST–OsCKX2 modulated transcriptional regulation, thus enhancing our understanding of the regulatory mechanism underlying DST–OsCKX2-mediated spikelet number.
For Upcoming Special lssue: