Please wait a minute...
J Integr Plant Biol, 2015, 57 (8): 708-721, Research Article
Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation
Jing Wang, Yan Wang, Ju Yang, Chunli Ma, Ying Zhang, Ting Ge, Zhi Qi and Yan Kang*
College of Life Sciences, Inner Mongolia University, Hohhot, China
*Correspondence: E-mail: kangyan105@imu.edu.cn
doi: 10.1111/jipb.12320
Abstract

Anthocyanin accumulation is a common phenomenon seen in plants under environmental stress. In this study, we identified a new allele of ROOT HAIR DEFECTIVE3 (RHD3) showing an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. It is known that ethylene negatively regulates light- and sucrose-induced anthocyanin biosynthesis. We hypothesized that RHD3 achieves its negative effect on anthocyanin biosynthesis via an ethylene-regulating pathway. In support of this, similar to rhd3 mutants, the Arabidopsis ethylene signaling mutants etr1, ein2, and ein3/eil1 showed an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. The ethylene precursor ACC strongly suppressed anthocyanin accumulation, dependent on ETR1, EIN2, EIN3/EIL1, and, partially, RHD3. In addition, inactivating RHD3 partially reversed the suppressive effect of ETO1 inactivation-evoked endogenous ethylene production on anthocyanin accumulation. The expression of nitrogen starvation-induced anthocyanin biosynthesis genes was negatively regulated by RHD3, but ethylene response genes were positively regulated by RHD3. Wild-type seedlings overexpressing RHD3 showed similar phenotypes to rhd3 mutants, indicating the existence of a fine-tuned relationship between gene expression and function. RHD3 was initially identified as a gene involved in root hair development. This study uncovered a new physiological function of RHD3 in nitrogen starvation-induced anthocyanin accumulation and ethylene homeostasis. [Correction added on 6 August 2015, after first online publication: “RND3” corrected to “RHD3”.]

 

Wang J, Wang Y, Yang J, Ma C, Zhang Y, Ge T, Qi Z, Kang Y (2015) Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation. J Integr Plant Biol 57: 708–721 doi: 10.1111/jipb.12320

--------------------------------------------------------------------------------------------------------------------
Received: 07 October 2014      Accepted:    Online on:
This Article
   Full Text  
   Full Text (PDF) 
   Supporting information
Services
   E-mail Link to this Article
   Export Citation for this Article
Citing Articles
   Cited By
Google Scholar
   Articles by Jing Wang
   Articles by Yan Wang
   Articles by Ju Yang
   Articles by Chunli Ma
   Articles by Ying Zhang
   Articles by Ting Ge
   Articles by Zhi Qi
   Articles by Yan Kang
PubMed
   Articles by Jing Wang
   Articles by Yan Wang
   Articles by Ju Yang
   Articles by Chunli Ma
   Articles by Ying Zhang
   Articles by Ting Ge
   Articles by Zhi Qi
   Articles by Yan Kang
Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2020 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
网站备案号:京ICP备16067583号-22