Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
  
Ca2+-independent ZmCPK2 is inhibited by Ca2+-dependent ZmCPK17 during drought response in maize
Xiaoying Hu, Jinkui Cheng, Minmin Lu, Tingting Fang, Yujuan Zhu, Zhen Li, Xiqing Wang, Yu Wang, Yan Guo, Shuhua Yang, Zhizhong Gong
J Integr Plant Biol 2024, 66 (7): 1313-1333.  
DOI: 10.1111/jipb.13675
Abstract (Browse 284)  |   Save
Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca2+ can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat
Dongzhi Wang, Xiuxiu Zhang, Yuan Cao, Aamana Batool, Yongxin Xu, Yunzhou Qiao, Yongpeng Li, Hao Wang, Xuelei Lin, Xiaomin Bie, Xiansheng Zhang, Ruilian Jing, Baodi Dong, Yiping Tong, Wan Teng, Xigang Liu, Jun Xiao
J Integr Plant Biol 2024, 66 (7): 1295-1312.  
DOI: 10.1111/jipb.13670
Abstract (Browse 220)  |   Save
Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Knockout of miR396 genes increases seed size and yield in soybean
Hongtao Xie, Fei Su, Qingfeng Niu, Leping Geng, Xuesong Cao, Minglei Song, Jinsong Dong, Zai Zheng, Rui Guo, Yang Zhang, Yuanwei Deng, Zhanbo Ji, Kang Pang, Jian-Kang Zhu and Jianhua Zhu
J Integr Plant Biol 2024, 66 (6): 1148-1157.  
doi: 10.1111/jipb.13660
Abstract (Browse 209)  |   Save
Yield improvement has long been an important task for soybean breeding in the world in order to meet the increasing demand for food and animal feed. miR396 genes have been shown to negatively regulate grain size in rice, but whether miR396 family members may function in a similar manner in soybean is unknown. Here, we generated eight soybean mutants harboring different combinations of homozygous mutations in the six soybean miR396 genes through genome editing with clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) 12SF01 in the elite soybean cultivar Zhonghuang 302 (ZH302). Four triple mutants (mir396aci, mir396acd, mir396adf, and mir396cdf), two quadruple mutants (mir396-abcd and mir396acfi), and two quintuple mutants (mir396abcdf and mir396bcdfi) were characterized. We found that plants of all the mir396 mutants produced larger seeds compared to ZH302 plants. Field tests showed that mir396adf and mir396cdf plants have significantly increased yield in growth zones with relatively high latitude which are suited for ZH302 and moderately increased yield in lower latitude. In contrast, mir396abcdf and mir396bcdfi plants have increased plant height and decreased yield in growth zones with relatively high latitude due to lodging issues, but they are suited for low latitude growth zones with increased yield without lodging problems. Taken together, our study demonstrated that loss-of-function of miR396 genes leads to significantly enlarged seed size and increased yield in soybean, providing valuable germplasms for breeding high-yield soybean.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The miR159a-DUO1 module regulates pollen development by modulating auxin biosynthesis and starch metabolism in citrus
Yanhui Xu, Wenxiu Tian, Minqiang Yin, Zhenmei Cai, Li Zhang, Deyi Yuan, Hualin Yi, Juxun Wu
J Integr Plant Biol 2024, 66 (7): 1351-1369.  
DOI: 10.1111/jipb.13656
Abstract (Browse 188)  |   Save
Achieving seedlessness in citrus varieties is one of the important objectives of citrus breeding. Male sterility associated with abnormal pollen development is an important factor in seedlessness. However, our understanding of the regulatory mechanism underlying the seedlessness phenotype in citrus is still limited. Here, we determined that the miR159a-DUO1 module played an important role in regulating pollen development in citrus, which further indirectly modulated seed development and fruit size. Both the overexpression of csi-miR159a and the knocking out of DUO1 in Hong Kong kumquat (Fortunella hindsii) resulted in small and seedless fruit phenotypes. Moreover, pollen was severely aborted in both transgenic lines, with arrested pollen mitotic I and abnormal pollen starch metabolism. Through additional cross-pollination experiments, DUO1 was proven to be the key target gene for miR159a to regulate male sterility in citrus. Based on DNA affinity purification sequencing (DAP-seq), RNA-seq, and verified interaction assays, YUC2/YUC6, SS4 and STP8 were identified as downstream target genes of DUO1, those were all positively regulated by DUO1. In transgenic F. hindsii lines, the miR159a-DUO1 module down-regulated the expression of YUC2/ YUC6, which decreased indoleacetic acid (IAA) levels and modulated auxin signaling to repress pollen mitotic I. The miR159a-DUO1 module reduced the expression of the starch synthesis gene SS4 and sugar transport gene STP8 to disrupt starch metabolism in pollen. Overall, this work reveals a new mechanism by which the miR159a- DUO1 module regulates pollen development and elucidates the molecular regulatory network underlying male sterility in citrus.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A highly efficient soybean transformation system using GRF3-GIF1 chimeric protein
Ying Zhao, Peng Cheng, Ying Liu, Chunyan Liu, Zhenbang Hu, Dawei Xin, Xiaoxia Wu, Mingliang Yang, Qingshan Chen
J Integr Plant Biol 2025, 67 (1): 3-6.  
doi: 10.1111/jipb.13767
Abstract (Browse 187)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Chemoproteomics reveals the epoxidase enzyme for the biosynthesis of camptothecin in Ophiorrhiza pumila
Tong Zhang, Yan Wang, Shiwen Wu, Ernuo Tian, Chengshuai Yang, Zhihua Zhou, Xing Yan and Pingping Wang
J Integr Plant Biol 2024, 66 (6): 1044-1047.  
doi: 10.1111/jipb.13594
Abstract (Browse 183)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Chromosomal-level genome and metabolome analyses of highly heterozygous allohexaploid Dendrocalamus brandisii elucidate shoot quality and developmental characteristics
Jutang Jiang, Zeyu Zhang, Yucong Bai, Xiaojing Wang, Yuping Dou, Ruiman Geng, Chongyang Wu, Hangxiao Zhang, Cunfu Lu, Lianfeng Gu and Jian Gao
J Integr Plant Biol 2024, 66 (6): 1087-1105.  
doi: 10.1111/jipb.13592
Abstract (Browse 177)  |   Save
Dendrocalamus brandisii (Munro) Kurz is a sympodial bamboo species with inimitable taste and flavorful shoots. Its rapid growth and use as high-quality material make this bamboo species highly valued for both food processing and wood applications. However, genome information for D. brandisii is lacking, primarily due to its polyploidy and large genome size. Here, we assembled a high-quality genome for hexaploid D. brandisii, which comprises 70 chromosomes with a total size of 2,756 Mb, using long-read HiFi sequencing. Furthermore, we accurately separated the genome into its three constituent subgenomes. We used Oxford Nanopore Technologies long reads to construct a transcriptomic dataset covering 15 tissues for gene annotation to complement our genome assembly, revealing differential gene expression and post-transcriptional regulation. By integrating metabolome analysis, we unveiled that well-balanced lignin formation, as well as abundant flavonoid and fructose contents, contribute to the superior quality of D. brandisii shoots. Integrating genomic, transcriptomic, and metabolomic datasets provided a solid foundation for enhancing bamboo shoot quality and developing efficient gene-editing techniques. This study should facilitate research on D. brandisii and enhance its use as a food source and wood material by providing crucial genomic resources.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
In vivo haploid induction in cauliflower, kale, and broccoli
Guixiang Wang, Mei Zong, Shuo Han, Hong Zhao, Mengmeng Duan, Xin Liu, Ning Guo, Fan Liu
J Integr Plant Biol 2024, 66 (9): 1823-1826.  
doi: 10.1111/jipb.13730
Abstract (Browse 174)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
D53 represses rice blast resistance by directly targeting phenylalanine ammonia lyases
Haitao Ye, Qingqing Hou, Haitao Lv, Hui Shi, Duo Wang, Yujie Chen, Tangshuai Xu, Mei Wang, Min He, Junjie Yin, Xiang Lu, Yongyan Tang, Xiaobo Zhu, Lijuan Zou, Xuewei Chen, Jiayang Li, Bing Wang and Jing Wang
J Integr Plant Biol 2024, 66 (9): 1827-1830.  
DOI: 10.1111/jipb.13734
Abstract (Browse 173)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Efficient and transformation-free genome editing in pepper enabled by RNA virus-mediated delivery of CRISPR/Cas9
Chenglu Zhao, Huanhuan Lou, Qian Liu, Siqi Pei, Qiansheng Liao, Zhenghe Li
J Integr Plant Biol 2024, 66 (10): 2079-2082.  
doi: 10.1111/jipb.13741
Abstract (Browse 171)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A signaling cascade mediating fruit trait development via phosphorylation-modulated nuclear accumulation of JAZ repressor
Wei Wang, Jinyao Ouyang, Yating Li, Changsheng Zhai, Bing He, Huahan Si, Kunsong Chen, Jocelyn K. C. Rose and Wensuo Jia
J Integr Plant Biol 2024, 66 (6): 1106-1125.  
doi: 10.1111/jipb.13654
Abstract (Browse 168)  |   Save
It is generally accepted that jasmonate-ZIM domain (JAZ) repressors act to mediate jasmonate (JA) signaling via CORONATINE-INSENSITIVE1 (COI1)-mediated degradation. Here, we report a cryptic signaling cascade where a JAZ repressor, FvJAZ12, mediates multiple signaling inputs via phosphorylation-modulated subcellular translocation rather than the COI1-mediated degradation mechanism in strawberry (Fragaria vesca). FvJAZ12 acts to regulate flavor metabolism and defense response, and was found to be the target of FvMPK6, a mitogen-activated protein kinase that is capable of responding to multiple signal stimuli. FvMPK6 phosphorylates FvJAZ12 at the amino acid residues S179 and T183 adjacent to the PY residues, thereby attenuating its nuclear accumulation and relieving its repression for FvMYC2, which acts to control the expression of lipoxygenase 3 (FvLOX3), an important gene involved in JA biosynthesis and a diverse array of cellular metabolisms. Our data reveal a previously unreported mechanism for JA signaling and decipher a signaling cascade that links multiple signaling inputs with fruit trait development.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Big data and artificial intelligence-aided crop breeding: Progress and prospects
Wanchao Zhu, Weifu Li, Hongwei Zhang, Lin Li
J Integr Plant Biol 2025, 67 (3): 722-739.  
doi: 10.1111/jipb.13791
Abstract (Browse 167)  |   Save
The past decade has witnessed rapid developments in gene discovery, biological big data (BBD), artificial intelligence (AI)-aided technologies, and molecular breeding. These advancements are expected to accelerate crop breeding under the pressure of increasing demands for food. Here, we first summarize current breeding methods and discuss the need for new ways to support breeding efforts. Then, we review how to combine BBD and AI technologies for genetic dissection, exploring functional genes, predicting regulatory elements and functional domains, and phenotypic prediction. Finally, we propose the concept of intelligent precision design breeding (IPDB) driven by AI technology and offer ideas about how to implement IPDB. We hope that IPDB will enhance the predictability, efficiency, and cost of crop breeding compared with current technologies. As an example of IPDB, we explore the possibilities offered by CropGPT, which combines biological techniques, bioinformatics, and breeding art from breeders, and presents an open, shareable, and cooperative breeding system. IPDB provides integrated services and communication platforms for biologists, bioinformatics experts, germplasm resource specialists, breeders, dealers, and farmers, and should be well suited for future breeding.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
OsATL32 ubiquitinates the reactive oxygen species-producing OsRac5–OsRbohB module to suppress rice immunity
Yuqing Yan, Hui Wang, Yan Bi, Jiajing Wang, Muhammad Noman, Dayong Li, Fengming Song
J Integr Plant Biol 2024, 66 (7): 1459-1480.  
DOI: 10.1111/jipb.13666
Abstract (Browse 162)  |   Save
Ubiquitination-mediated protein degradation is integral to plant immunity, with E3 ubiquitin ligases acting as key factors in this process. Here, we report the functions of OsATL32, a plasma membrane-localized Arabidopsis Tóxicos En Levadura (ATL)-type E3 ubiquitin ligase, in rice (Oryza sativa) immunity and its associated regulatory network. We found that the expression of OsATL32 is downregulated in both compatible and incompatible interactions between rice and the rice blast fungus Magnaporthe oryzae. The OsATL32 protein level declines in response to infection by a compatible M. oryzae strain or to chitin treatment. OsATL32 negatively regulates rice resistance to blast and bacterial leaf blight diseases, as well as chitin-triggered immunity. Biochemical and genetic studies revealed that OsATL32 suppresses pathogen-induced reactive oxygen species (ROS) accumulation by mediating ubiquitination and degradation of the ROS- producing OsRac5–OsRbohB module, which enhances rice immunity against M. oryzae. The protein phosphatase PHOSPHATASE AND TENSIN HOMOLOG enhances rice blast resistance by dephosphorylating OsATL32 and promoting its degradation, preventing its negative effect on rice immunity. This study provides insights into the molecular mechanism by which the E3 ligase OsATL32 targets a ROS-producing module to undermine rice immunity.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits
Shan Li, Yu Zhao, Pan Wu, Donald Grierson, Lei Gao
J Integr Plant Biol 2024, 66 (9): 1831-1863.  
doi: 10.1111/jipb.13739
Abstract (Browse 159)  |   Save
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
ACBP4-WRKY70-RAP2.12 module positively regulates submergence-induced hypoxia response in Arabidopsis thaliana
Mengyun Guo, Yingjun Yao, Kangqun Yin, Luna Tan, Meng Liu, Jing Hou, Han Zhang, Ruyun Liang, Xinran Zhang, Heng Yang, Xiaoxiao Chen, Jinrui Tan, Yan Song, Shangling Lou, Liyang Chen, Xuejing Liu, Si Tang, Yongqi Hu, Jin Yan, Wensen Fu, Kai Yang, Ruijia Zhang, Xuerui Li, Yao Liu, Zhen Yan, Wei Liu, Yu Han, Jianquan Liu, Kangshan Mao and Huanhuan Liu
J Integr Plant Biol 2024, 66 (6): 1052-1067.  
doi: 10.1111/jipb.13647
Abstract (Browse 158)  |   Save
ACYL-CoA-BINDING PROTEINs (ACBPs) play crucial regulatory roles during plant response to hypoxia, but their molecular mechanisms remain poorly understood. Our study reveals that ACBP4 serves as a positive regulator of the plant hypoxia response by interacting with WRKY70, influencing its nucleocytoplasmic shuttling in Arabidopsis thaliana. Furthermore, we demonstrate the direct binding of WRKY70 to the ACBP4 promoter, resulting in its upregulation and suggesting a positive feedback loop. Additionally, we pinpointed a phosphorylation site at Ser638 of ACBP4, which enhances submergence tolerance, potentially by facilitating WRKY70′s nuclear shuttling. Surprisingly, a natural variation in this phosphorylation site of ACBP4 allowed A. thaliana to adapt to humid conditions during its historical demographic expansion. We further observed that both phosphorylated ACBP4 and oleoyl-CoA can impede the interaction between ACBP4 and WRKY70, thus promoting WRKY70's nuclear translocation. Finally, we found that the overexpression of orthologous BnaC5.ACBP4 and BnaA7.WRKY70 in Brassica napus increases submergence tolerance, indicating their functional similarity across genera. In summary, our research not only sheds light on the functional significance of the ACBP4 gene in hypoxia response, but also underscores its potential utility in breeding flooding-tolerant oilseed rape varieties.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Rice stripe mosaic virus hijacks rice heading‐related gene to promote the overwintering of its insect vector
Siping Chen, Xinyi Zhong, Zhiyi Wang, Biao Chen, Xiuqin Huang, Sipei Xu, Xin Yang, Guohui Zhou and Tong Zhang
J Integr Plant Biol 2024, 66 (9): 2000-2016.  
DOI: 10.1111/jipb.13722
Abstract (Browse 158)  |   Save
Rice stripe mosaic virus (RSMV) is an emerging pathogen which significantly reduces rice yields in the southern region of China. It is transmitted by the leafhopper Recilia dorsalis, which overwinters in rice fields. Our field investigations revealed that RSMV infection causes delayed rice heading, resulting in a large number of green diseased plants remaining in winter rice fields. This creates a favorable environment for leafhoppers and viruses to overwinter, potentially contributing to the rapid spread and epidemic of the disease. Next, we explored the mechanism by which RSMV manipulates the developmental processes of the rice plant. A rice heading‐related E3 ubiquitin ligase, Heading date Associated Factor 1 (HAF1), was found to be hijacked by the RSMV‐encoded P6. The impairment of HAF1 function affects the ubiquitination and degradation of downstream proteins, HEADING DATE 1 and EARLY FLOWERING3, leading to a delay in rice heading. Our results provide new insights into the development regulation‐based molecular interactions between virus and plant, and highlights the importance of understanding virus‐vector‐plant tripartite interactions for effective disease management strategies.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
AtVQ25 promotes salicylic acid-related leaf senescence by fine-tuning the self-repression of AtWRKY53
Qi Tan, Mingming Zhao, Jingwei Gao, Ke Li, Mengwei Zhang, Yunjia Li, Zeting Liu, Yujia Song, Xiaoyue Lu, Zhengge Zhu, Rongcheng Lin, Pengcheng Yin, Chunjiang Zhou and Geng Wang
J Integr Plant Biol 2024, 66 (6): 1126-1147.  
DOI: 10.1111/jipb.13659
Abstract (Browse 157)  |   Save
Most mechanistic details of chronologically ordered regulation of leaf senescence are unknown. Regulatory networks centered on AtWRKY53 are crucial for orchestrating and integrating various senescence-related signals. Notably, AtWRKY53 binds to its own promoter and represses transcription of AtWRKY53, but the biological significance and mechanism underlying this self-repression remain unclear. In this study, we identified the VQ motif-containing protein AtVQ25 as a cooperator of AtWRKY53. The expression level of AtVQ25 peaked at mature stage and was specifically repressed after the onset of leaf senescence. AtVQ25-overexpressing plants and atvq25 mutants displayed precocious and delayed leaf senescence, respectively. Importantly, we identified AtWRKY53 as an interacting partner of AtVQ25. We determined that interaction between AtVQ25 and AtWRKY53 prevented AtWRKY53 from binding to W-box elements on the AtWRKY53 promoter and thus counteracted the self-repression of AtWRKY53. In addition, our RNA-sequencing data revealed that the AtVQ25-AtWRKY53 module is related to the salicylic acid (SA) pathway. Precocious leaf senescence and SA-induced leaf senescence in AtVQ25-overexpressing lines were inhibited by an SA pathway mutant, atsid2, and NahG transgenic plants; AtVQ25-overexpressing/atwrky53 plants were also insensitive to SA-induced leaf senescence. Collectively, we demonstrated that AtVQ25 directly attenuates the self-repression of AtWRKY53 during the onset of leaf senescence, which is substantially helpful for understanding the timing of leaf senescence onset modulated by AtWRKY53.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
RBB1 negatively regulates rice disease resistance by modulating protein glycosylation
Bin Zhang, Mingliang Guo, Xiangpei Liu, Bintao Zhang, Yan Cui, Xinglan Cao, Zhipeng Zhang, Chuanlin Shi, Hua Wei, Huiying He, Hong Zhang, Yiwang Zhu, Xianmeng Wang, Yang Lv, Xiaoman Yu, Dandan Chen, Qiaoling Yuan, Sheng Teng, Tongjun Sun, Qian Qian, Lianguang Shang
J Integr Plant Biol 2025, 67 (2): 391-407.  
DOI: 10.1111/jipb.13810
Abstract (Browse 155)  |   Save
Glycosylation, a prevalent post-translational modification in eukaryotic secreted and membrane-associated proteins, plays a pivotal role in diverse physiological and pathological processes. Although UDP-N-acetylglucosamine (UDP-GlcNAc) is essential for this modification, the specific glycosylation mechanisms during plant leaf senescence and defense responses remain poorly understood. In our research, we identified a novel rice mutant named rbb1 (resistance to blast and bacterial blight1), exhibiting broad-spectrum disease resistance. This mutant phenotype results from a loss-of-function mutation in the gene encoding glucosamine-6-phosphate acetyltransferase, an important enzyme in D-glucosamine 6-phosphate acetylation. The rbb1 mutant demonstrates enhanced defense responses, evident in increased resistance to rice blast and bacterial blight, along with the upregulation of defense-response genes. Various biochemical markers indicate an activated defense mechanism in the rbb1 mutant, such as elevated levels of reactive oxygen species and malondialdehyde, reduced enzyme activity and UDP-GlcNAc content, and decreased expression of N-glycan and O-glycan modifying proteins. Moreover, proteome analysis of N-glycosylation modifications reveals alterations in the N-glycosylation of several disease-resistance-related proteins, with a significant reduction in Prx4 and Prx13 in rbb1-1. Additionally, the knockout of Prx4 or Prx13 also enhances resistance to Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae (M. oryzae). This study uncovers a novel mechanism of defense response in rice, suggesting potential targets for the development of disease-resistant varieties.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
PagMYB128 regulates secondary cell wall formation by direct activation of cell wall biosynthetic genes during wood formation in poplar
Yuanyuan Hao, Fachuang Lu, Seung-Won Pyo, Min-Ha Kim, Jae-Heung Ko, Xiaojing Yan, John Ralph and Quanzi Li
J Integr Plant Biol 2024, 66 (8): 1658-1674.  
DOI: 10.1111/jipb.13717
Abstract (Browse 152)  |   Save
The biosynthesis of cellulose, lignin, and hemicelluloses in plant secondary cell walls (SCWs) is regulated by a hierarchical transcriptional regulatory network. This network features orthologous transcription factors shared between poplar and Arabidopsis, highlighting a foundational similarity in their genetic regulation. However, knowledge on the discrepant behavior of the transcriptional-level molecular regulatory mechanisms between poplar and Arabidopsis remains limited. In this study, we investigated the function of PagMYB128 during wood formation and found it had broader impacts on SCW formation compared to its Arabidopsis ortholog, AtMYB103. Transgenic poplar trees overexpressing PagMYB128 exhibited significantly enhanced xylem development, with fiber cells and vessels displaying thicker walls, and an increase in the levels of cellulose, lignin, and hemicelluloses in the wood. In contrast, plants with dominant repression of PagMYB128 demonstrated the opposite phenotypes. RNA sequencing and reverse transcription – quantitative polymerase chain reaction showed that PagMYB128 could activate SCW biosynthetic gene expression, and chromatin immunoprecipitation along with yeast one-hybrid, and effector–reporter assays showed this regulation was direct. Further analysis revealed that PagSND1 (SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN1) directly regulates PagMYB128 but not cell wall metabolic genes, highlighting the pivotal role of PagMYB128 in the SND1-driven regulatory network for wood development, thereby creating a feedforward loop in SCW biosynthesis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Salicylic acid: The roles in plant immunity and crosstalk with other hormones
Hainan Tian, Lu Xu, Xin Li, Yuelin Zhang
J Integr Plant Biol 2025, 67 (3): 773-785.  
doi: 10.1111/jipb.13820
Abstract (Browse 152)  |   Save
Land plants use diverse hormones to coordinate their growth, development and responses against biotic and abiotic stresses. Salicylic acid (SA) is an essential hormone in plant immunity, with its levels and signaling tightly regulated to ensure a balanced immune output. Over the past three decades, molecular genetic analyses performed primarily in Arabidopsis have elucidated the biosynthesis and signal transduction pathways of key plant hormones, including abscisic acid, jasmonic acid, ethylene, auxin, cytokinin, brassinosteroids, and gibberellin. Crosstalk between different hormones has become a major focus in plant biology with the goal of obtaining a full picture of the plant hormone signaling network. This review highlights the roles of SA in plant immunity and summarizes our current understanding of the pairwise interactions of SA with other major plant hormones. The complexity of these interactions is discussed, with the hope of stimulating research to address existing knowledge gaps in hormone crosstalk, particularly in the context of balancing plant growth and defense.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
TaWRKY55–TaPLATZ2 module negatively regulate saline–alkali stress tolerance in wheat
Lin Wei, Xinman Ren, Lumin Qin, Rong Zhang, Minghan Cui, Guangmin Xia, Shuwei Liu
J Integr Plant Biol 2025, 67 (1): 19-34.  
DOI: 10.1111/jipb.13793
Abstract (Browse 151)  |   Save
Saline–alkaline soils are a major environmental problem that limit plant growth and crop productivity. Plasma membrane H+-ATPases and the salt overly sensitive (SOS) signaling pathway play important roles in plant responses to saline–alkali stress. However, little is known about the functional genes and mechanisms regulating the transcription of H+-ATPases and SOS pathway genes under saline–alkali stress. In the present study, we identified that the plant AT-rich sequence and zinc-binding (TaPLATZ2) transcription factor are involved in wheat response to saline–alkali stress by directly suppressing the expression of TaHA2/TaSOS3. The knockdown of TaPLATZ2 enhances salt and alkali stress tolerance, while overexpression of TaPLATZ2 leads to salt and alkali stress sensitivity in wheat. In addition, TaWRKY55 directly upregulated the expression of TaPLATZ2 during saline–alkali stress. Through knockdown and overexpression of TaWRKY55 in wheat, TaWRKY55 was shown to negatively modulate salt and alkali stress tolerance. Genetic analyses confirmed that TaPLATZ2 functions downstream of TaWRKY55 in response to salt and alkaline stresses. These findings provide a TaWRKY55–TaPLATZ2–TaHA2/TaSOS3 regulatory module that regulates wheat responses to saline–alkali stress.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Rice seed germination priming by salicylic acid and the emerging role of phytohormones in anaerobic germination
Yongqi He, Jia Zhao, Zhoufei Wang
J Integr Plant Biol 2024, 66 (8): 1537-1539.  
doi: 10.1111/jipb.13728
Abstract (Browse 150)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
BTA2 regulates tiller angle and the shoot gravity response through controlling auxin content and distribution in rice
Zhen Li, Junhua Ye, Qiaoling Yuan, Mengchen Zhang, Xingyu Wang, Jing Wang, Tianyi Wang, Hongge Qian, Xinghua Wei, Yaolong Yang, Lianguang Shang and Yue Feng
J Integr Plant Biol 2024, 66 (9): 1966-1982.  
doi: 10.1111/jipb.13726
Abstract (Browse 148)  |   Save
Tiller angle is a key agricultural trait that establishes plant architecture, which in turn strongly affects grain yield by influencing planting density in rice. The shoot gravity response plays a crucial role in the regulation of tiller angle in rice, but the underlying molecular mechanism is largely unknown. Here, we report the identification of the BIG TILLER ANGLE2 (BTA2), which regulates tiller angle by controlling the shoot gravity response in rice. Loss-of-function mutation of BTA2 dramatically reduced auxin content and affected auxin distribution in rice shoot base, leading to impaired gravitropism and therefore a big tiller angle. BTA2 interacted with AUXIN RESPONSE FACTOR7 (ARF7) to modulate rice tiller angle through the gravity signaling pathway. The BTA2 protein was highly conserved during evolution. Sequence variation in the BTA2 promoter of indica cultivars harboring a less expressed BTA2 allele caused lower BTA2 expression in shoot base and thus wide tiller angle during rice domestication. Overexpression of BTA2 significantly increased grain yield in the elite rice cultivar Huanghuazhan under appropriate dense planting conditions. Our findings thus uncovered the BTA2-ARF7 module that regulates tiller angle by mediating the shoot gravity response. Our work offers a target for genetic manipulation of plant architecture and valuable information for crop improvement by producing the ideal plant type.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Phosphorylation of ZmAL14 by ZmSnRK2.2 regulates drought resistance through derepressing ZmROP8 expression
Yalin Wang, Jinkui Cheng, Yazhen Guo, Zhen Li, Shuhua Yang, Yu Wang, Zhizhong Gong
J Integr Plant Biol 2024, 66 (7): 1334-1350.  
DOI: 10.1111/jipb.13677
Abstract (Browse 147)  |   Save
Drought stress has negative effects on crop growth and production. Characterization of transcription factors that regulate the expression of drought-responsive genes is critical for understanding the transcriptional regulatory networks in response to drought, which facilitates the improvement of crop drought tolerance. Here, we identified an Alfin-like (AL) family gene ZmAL14 that negatively regulates drought resistance. Overexpression of ZmAL14 exhibits susceptibility to drought while mutation of ZmAL14 enhances drought resistance. An abscisic acid (ABA)-activated protein kinase ZmSnRK2.2 interacts and phosphorylates ZmAL14 at T38 residue. Knockout of ZmSnRK2.2 gene decreases drought resistance of maize. A dehydration-induced Rho-like small guanosine triphosphatase gene ZmROP8 is directly targeted and repressed by ZmAL14. Phosphorylation of ZmAL14 by ZmSnRK2.2 prevents its binding to the ZmROP8 promoter, thereby releasing the repression of ZmROP8 transcription. Overexpression of ZmROP8 stimulates peroxidase activity and reduces hydrogen peroxide accumulation after drought treatment. Collectively, our study indicates that ZmAL14 is a negative regulator of drought resistance, which can be phosphorylated by ZmSnRK2.2 through the ABA signaling pathway, thus preventing its suppression on ZmROP8 transcription during drought stress response.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
GhCASPL1 regulates secondary cell wall thickening in cotton fibers by stabilizing the cellulose synthase complex on the plasma membrane
Li Zhang, Xingpeng Wen, Xin Chen, Yifan Zhou, Kun Wang, Yuxian Zhu
J Integr Plant Biol 2024, 66 (12): 2632-2647.  
doi: 10.1111/jipb.13777
Abstract (Browse 146)  |   Save
Cotton (Gossypium hirsutum) fibers are elongated single cells that rapidly accumulate cellulose during secondary cell wall (SCW) thickening, which requires cellulose synthase complex (CSC) activity. Here, we describe the CSC-interacting factor CASPARIAN STRIP MEMBRANE DOMAIN-LIKE1 (GhCASPL1), which contributes to SCW thickening by influencing CSC stability on the plasma membrane. GhCASPL1 is preferentially expressed in fiber cells during SCW biosynthesis and encodes a MARVEL domain protein. The ghcaspl1 ghcaspl2 mutant exhibited reduced plant height and produced mature fibers with fewer natural twists, lower tensile strength, and a thinner SCW compared to the wild type. Similarly, the Arabidopsis (Arabidopsis thaliana) caspl1 caspl2 double mutant showed a lower cellulose content and thinner cell walls in the stem vasculature than the wild type but normal plant morphology. Introducing the cotton gene GhCASPL1 successfully restored the reduced cellulose content of the Arabidopsis caspl1 caspl2 mutant. Detergent treatments, ultracentrifugation assays, and enzymatic assays showed that the CSC in the ghcaspl1 ghcaspl2 double mutant showed reduced membrane binding and decreased enzyme activity compared to the wild type. GhCASPL1 binds strongly to phosphatidic acid (PA), which is present in much higher amounts in thickening fiber cells compared to ovules and leaves. Mutating the PA-binding site in GhCASPL1 resulted in the loss of its colocalization with GhCesA8, and it failed to localize to the plasma membrane. PA may alter membrane structure to facilitate protein–protein interactions, suggesting that GhCASPL1 and PA collaboratively stabilize the CSC. Our findings shed light on CASPL functions and the molecular machinery behind SCW biosynthesis in cotton fibers.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification
Haiyan Bai, Yanghuan Dai, Panting Fan, Yiming Zhou, Xiangying Wang, Jingjing Chen, Yuzhe Jiao, Chang Du, Zhuoxi Huang, Yuting Xie, Xiaoyu Guo, Xiaoqiang Lang, Yongqing Ling, Yizhen Deng, Qi Liu, Shengbo He, Zhonghui Zhang
J Integr Plant Biol 2024, 66 (12): 2613-2631.  
doi: 10.1111/jipb.13770
Abstract (Browse 145)  |   Save
In eukaryotes, RNA N6-methyladenosine (m6A) modification and microRNA (miRNA)-mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid–liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)–SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri-miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome-wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid–liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Functional divergences of natural variations of TaNAM-A1 in controlling leaf senescence during wheat grain filling
Longxi Zhou, Guowei Chang, Chuncai Shen, Wan Teng, Xue He, Xueqiang Zhao, Yanfu Jing, Zhixiong Huang and Yiping Tong
J Integr Plant Biol 2024, 66 (6): 1242-1260.  
DOI: 10.1111/jipb.13658
Abstract (Browse 144)  |   Save
Leaf senescence is an essential physiological process related to grain yield potential and nutritional quality. Green leaf duration (GLD) after anthesis directly reflects the leaf senescence process and exhibits large genotypic differences in common wheat; however, the underlying gene regulatory mechanism is still lacking. Here, we identified TaNAM-A1 as the causal gene of the major loci qGLD-6A for GLD during grain filling by map-based cloning. Transgenic assays and TILLING mutant analyses demonstrated that TaNAM-A1 played a critical role in regulating leaf senescence, and also affected spike length and grain size. Furthermore, the functional divergences among the three haplotypes of TaNAM-A1 were systematically evaluated. Wheat varieties with TaNAM-A1d (containing two mutations in the coding DNA sequence of TaNAM-A1) exhibited a longer GLD and superior yield-related traits compared to those with the wild type TaNAM-A1a. All three haplotypes were functional in activating the expression of genes involved in macromolecule degradation and mineral nutrient remobilization, with TaNAM-A1a showing the strongest activity and TaNAM-A1d the weakest. TaNAM-A1 also modulated the expression of the senescence-related transcription factors TaNAC-S-7A and TaNAC016-3A. TaNAC016-3A enhanced the transcriptional activation ability of TaNAM-A1a by protein-protein interaction, thereby promoting the senescence process. Our study offers new insights into the fine-tuning of the leaf functional period and grain yield formation for wheat breeding under various geographical climatic conditions.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Simultaneous mutations in ITPK4 and MRP5 genes result in a low phytic acid level without compromising salt tolerance in Arabidopsis
Yuying Ren, Mengdan Jiang, Jian-Kang Zhu, Wenkun Zhou, Chunzhao Zhao
J Integr Plant Biol 2024, 66 (10): 2109-2125.  
DOI: 10.1111/jipb.13745
Abstract (Browse 144)  |   Save
Generation of crops with low phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6)) is an important breeding direction, but such plants often display less desirable agronomic traits. In this study, through ethyl methanesulfonate-mediated mutagenesis, we found that inositol 1,3,4-trisphosphate 5/6-kinase 4 (ITPK4), which is essential for producing InsP6, is a critical regulator of salt tolerance in Arabidopsis. Loss of function of ITPK4 gene leads to reduced root elongation under salt stress, which is primarily because of decreased root meristem length and reduced meristematic cell number. The itpk4 mutation also results in increased root hair density and increased accumulation of reactive oxygen species during salt exposure. RNA sequencing assay reveals that several auxin-responsive genes are down-regulated in the itpk4-1 mutant compared to the wild-type. Consistently, the itpk4-1 mutant exhibits a reduced auxin level in the root tip and displays compromised gravity response, indicating that ITPK4 is involved in the regulation of the auxin signaling pathway. Through suppressor screening, it was found that mutation of Multidrug Resistance Protein 5 (MRP5)5 gene, which encodes an ATP-binding cassette (ABC) transporter required for transporting InsP6 from the cytoplasm into the vacuole, fully rescues the salt hypersensitivity of the itpk4-1 mutant, but in the itpk4-1 mrp5 double mutant, InsP6 remains at a very low level. These results imply that InsP6 homeostasis rather than its overall amount is beneficial for stress tolerance in plants. Collectively, this study uncovers a pair of gene mutations that confer low InsP6 content without impacting stress tolerance, which offers a new strategy for creating “low-phytate” crops.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions
Jie Wang, Honghong Wu, Yichao Wang, Wuwei Ye, Xiangpei Kong, Zujun Yin
J Integr Plant Biol 2024, 66 (7): 1274-1294.  
DOI: 10.1111/jipb.13652
Abstract (Browse 143)  |   Save
By 2050, the global population is projected to reach 9 billion, underscoring the imperative for innovative solutions to increase grain yield and enhance food security. Nanotechnology has emerged as a powerful tool, providing unique solutions to this challenge. Nanoparticles (NPs) can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties. Moreover, they can be used to monitor crop health status and augment plant resilience against abiotic stresses (such as salinity, drought, heavy metals, and extreme temperatures) that endanger global agriculture. Application of NPs can enhance stress tolerance mechanisms in plants, minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality. This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers, policymakers, and agricultural practitioners. With thoughtful stewardship, nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Transcription factor OsWRKY11 induces rice heading at low concentrations but inhibits rice heading at high concentrations
Lirong Zhao, Yunwei Liu, Yi Zhu, Shidie Chen, Yang Du, Luyao Deng, Lei Liu, Xia Li, Wanqin Chen, Zhiyu Xu, Yangyang Xiong, You Ming, Siyu Fang, Ligang Chen, Houping Wang, Diqiu Yu
J Integr Plant Biol 2024, 66 (7): 1385-1407.  
DOI: 10.1111/jipb.13679
Abstract (Browse 143)  |   Save
The heading date of rice is a crucial agronomic characteristic that influences its adaptability to different regions and its productivity potential. Despite the involvement of WRKY transcription factors in various biological processes related to development, the precise mechanisms through which these transcription factors regulate the heading date in rice have not been well elucidated. The present study identified OsWRKY11 as a WRKY transcription factor which exhibits a pivotal function in the regulation of the heading date in rice through a comprehensive screening of a clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 mutant library that specifically targets the WRKY genes in rice. The heading date of oswrky11 mutant plants and OsWRKY11-overexpressing plants was delayed compared with that of the wild-type plants under short-day and long-day conditions. Mechanistic investigation revealed that OsWRKY11 exerts dual effects on transcriptional promotion and suppression through direct and indirect DNA binding, respectively. Under normal conditions, OsWRKY11 facilitates flowering by directly inducing the expression of OsMADS14 and OsMADS15. The presence of elevated levels of OsWRKY11 protein promote formation of a ternary protein complex involving OsWRKY11, Heading date 1 (Hd1), and Days to heading date 8 (DTH8), and this complex then suppresses the expression of Ehd1, which leads to a delay in the heading date. Subsequent investigation revealed that a mild drought condition resulted in a modest increase in OsWRKY11 expression, promoting heading. Conversely, under severe drought conditions, a significant upregulation of OsWRKY11 led to the suppression of Ehd1 expression, ultimately causing a delay in heading date. Our findings uncover a previously unacknowledged mechanism through which the transcription factor OsWRKY11 exerts a dual impact on the heading date by directly and indirectly binding to the promoters of target genes.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
GmNF-YC4 delays soybean flowering and maturation by directly repressing GmFT2a and GmFT5a expression
Yupeng Cai, Li Chen, Xiaoqian Liu, Weiwei Yao, Wensheng Hou
J Integr Plant Biol 2024, 66 (7): 1370-1384.  
doi: 10.1111/jipb.13668
Abstract (Browse 142)  |   Save
Flowering time and growth period are key agronomic traits which directly affect soybean (Glycine max (L.) Merr.) adaptation to diverse latitudes and farming systems. The FLOWERING LOCUS T (FT) homologs GmFT2a and GmFT5a integrate multiple flowering regulation pathways and significantly advance flowering and maturity in soybean. Pinpointing the genes responsible for regulating GmFT2a and GmFT5a will improve our understanding of the molecular mechanisms governing growth period in soybean. In this study, we identified the Nuclear Factor Y-C (NFY-C) protein GmNF-YC4 as a novel flowering suppressor in soybean under long-day (LD) conditions. GmNF-YC4 delays flowering and maturation by directly repressing the expression of GmFT2a and GmFT5a. In addition, we found that a strong selective sweep event occurred in the chromosomal region harboring the GmNF-YC4 gene during soybean domestication. The GmNF-YC4Hap3 allele was mainly found in wild soybean (Glycine soja Siebold & Zucc.) and has been eliminated from G. max landraces and improved cultivars, which predominantly contain the GmNF-YC4Hap1 allele. Furthermore, the Gmnf-yc4 mutants displayed notably accelerated flowering and maturation under LD conditions. These alleles may prove to be valuable genetic resources for enhancing soybean adaptability to higher latitudes.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies
Zhou-Rui Wei, Dan Jiao, Christian Anton Wehenkel, Xiao-Xin Wei, Xiao-Quan Wang
J Integr Plant Biol 2024, 66 (12): 2664-2682.  
DOI: 10.1111/jipb.13760
Abstract (Browse 140)  |   Save
Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth-largest conifer genus, is a keystone component of the boreal and temperate dark-coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1,533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high-latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis, A. ziyuanensis, A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Profiling of Phakopsora pachyrhizi transcriptome revealed co-expressed virulence effectors as prospective RNA interference targets for soybean rust management
Haibing Ouyang, Guangzheng Sun, Kainan Li, Rui Wang, Xiaoyu Lv, Zhichao Zhang, Rong Zhao, Ying Wang, Haidong Shu, Haibin Jiang, Sicong Zhang, Jinbin Wu, Qi Zhang, Xi Chen, Tengfei Liu, Wenwu Ye, Yan Wang, Yuanchao Wang
J Integr Plant Biol 2024, 66 (11): 2543-2560.  
DOI: 10.1111/jipb.13772
Abstract (Browse 138)  |   Save
Soybean rust (SBR), caused by an obligate biotrophic pathogen Phakopsora pachyrhizi, is a devastating disease of soybean worldwide. However, the mechanisms underlying plant invasion by P. pachyrhizi are poorly understood, which hinders the development of effective control strategies for SBR. Here we performed detailed histological characterization on the infection cycle of P. pachyrhizi in soybean and conducted a high-resolution transcriptional dissection of P. pachyrhizi during infection. This revealed P. pachyrhizi infection leads to significant changes in gene expression with 10 co-expressed gene modules, representing dramatic transcriptional shifts in metabolism and signal transduction during different stages throughout the infection cycle. Numerous genes encoding secreted protein are biphasic expressed, and are capable of inhibiting programmed cell death triggered by microbial effectors. Notably, three co-expressed P. pachyrhizi apoplastic effectors (PpAE1, PpAE2, and PpAE3) were found to suppress plant immune responses and were essential for P. pachyrhizi infection. Double-stranded RNA coupled with nanomaterials significantly inhibited SBR infection by targeting PpAE1, PpAE2, and PpAE3, and provided long-lasting protection to soybean against P. pachyrhizi. Together, this study revealed prominent changes in gene expression associated with SBR and identified P. pachyrhizi virulence effectors as promising targets of RNA interference-based soybean protection strategy against SBR.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
An integrative framework reveals widespread gene flow during the early radiation of oaks and relatives in Quercoideae (Fagaceae)
Shui-Yin Liu, Ying-Ying Yang, Qin Tian, Zhi-Yun Yang, Shu-Feng Li, Paul J. Valdes, Alex Farnsworth, Heather R. Kates, Carolina M. Siniscalchi, Robert P. Guralnick, Douglas E. Soltis, Pamela S. Soltis, Gregory W. Stull, Ryan A. Folk, Ting-Shuang Yi
J Integr Plant Biol 2025, 67 (4): 1119-1141.  
doi: 10.1111/jipb.13773
Abstract (Browse 138)  |   Save
Although the frequency of ancient hybridization across the Tree of Life is greater than previously thought, little work has been devoted to uncovering the extent, timeline, and geographic and ecological context of ancient hybridization. Using an expansive new dataset of nuclear and chloroplast DNA sequences, we conducted a multifaceted phylogenomic investigation to identify ancient reticulation in the early evolution of oaks (Quercus). We document extensive nuclear gene tree and cytonuclear discordance among major lineages of Quercus and relatives in Quercoideae. Our analyses recovered clear signatures of gene flow against a backdrop of rampant incomplete lineage sorting, with gene flow most prevalent among major lineages of Quercus and relatives in Quercoideae during their initial radiation, dated to the Early-Middle Eocene. Ancestral reconstructions including fossils suggest ancestors of Castanea + Castanopsis, Lithocarpus, and the Old World oak clade probably co-occurred in North America and Eurasia, while the ancestors of Chrysolepis, Notholithocarpus, and the New World oak clade co-occurred in North America, offering ample opportunity for hybridization in each region. Our study shows that hybridization—perhaps in the form of ancient syngameons like those seen today—has been a common and important process throughout the evolutionary history of oaks and their relatives. Concomitantly, this study provides a methodological framework for detecting ancient hybridization in other groups.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Targeted G-to-T base editing for generation of novel herbicide-resistance gene alleles in rice
Yifu Tian, Xinbo Li, Jiyong Xie, Zai Zheng, Rundong Shen, Xuesong Cao, Mugui Wang, Chao Dong and Jian-Kang Zhu
J Integr Plant Biol 2024, 66 (6): 1048-1051.  
doi: 10.1111/jipb.13657
Abstract (Browse 137)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Regulation of cryptochrome-mediated blue light signaling by the ABI4–PIF4 module
Pengyu Song, Zidan Yang, Huaichang Wang, Fangfang Wan, Dingming Kang, Wenming Zheng, Zhizhong Gong, Jigang Li
J Integr Plant Biol 2024, 66 (11): 2412-2430.  
DOI: 10.1111/jipb.13769
Abstract (Browse 137)  |   Save
ABSCISIC ACID-INSENSITIVE 4 (ABI4) is a pivotal transcription factor which coordinates multiple aspects of plant growth and development as well as plant responses to environmental stresses. ABI4 has been shown to be involved in regulating seedling photomorphogenesis; however, the underlying mechanism remains elusive. Here, we show that the role of ABI4 in regulating photomorphogenesis is generally regulated by sucrose, but ABI4 promotes hypocotyl elongation of Arabidopsis seedlings under blue (B) light under all tested sucrose concentrations. We further show that ABI4 physically interacts with PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a well-characterized growth-promoting transcription factor, and post-translationally promotes PIF4 protein accumulation under B light. Further analyses indicate that ABI4 directly interacts with the B light photoreceptors cryptochromes (CRYs) and inhibits the interactions between CRYs and PIF4, thus relieving CRY-mediated repression of PIF4 protein accumulation. In addition, while ABI4 could directly activate its own expression, CRYs enhance, whereas PIF4 inhibits, ABI4-mediated activation of the ABI4 promoter. Together, our study demonstrates that the ABI4–PIF4 module plays an important role in mediating CRY-induced B light signaling in Arabidopsis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
DGK5‐mediated phosphatidic acid homeostasis interplays with reactive oxygen species in plant immune signaling
Dian Wang, Minhang Yuan, Yamei Zhuang, Xiu-Fang Xin, Guang Qi
J Integr Plant Biol 2024, 66 (7): 1263-1265.  
doi: 10.1111/jipb.13683
Abstract (Browse 136)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A transcriptional cascade mediated by two APETALA2 family members orchestrates carotenoid biosynthesis in tomato
Xiaoqing He, Kaidong Liu, Yi Wu, Weijie Xu, Ruochen Wang, Julien Pirrello, Mondher Bouzayen, Mengbo Wu and Mingchun Liu
J Integr Plant Biol 2024, 66 (6): 1227-1241.  
DOI: 10.1111/jipb.13650
Abstract (Browse 133)  |   Save
Carotenoids are important nutrients for human health that must be obtained from plants since they cannot be biosynthesized by the human body. Dissecting the regulatory mechanism of carotenoid metabolism in plants represents the first step toward manipulating carotenoid contents in plants by molecular design breeding. In this study, we determined that SlAP2c, an APETALA2 (AP2) family member, acts as a transcriptional repressor to regulate carotenoid biosynthesis in tomato (Solanum lycopersicum). Knockout of SlAP2c in both the “MicroTom” and “Ailsa Craig” backgrounds resulted in greater lycopene accumulation, whereas overexpression of this gene led to orange-ripe fruit with significantly lower lycopene contents than the wild type. We established that SlAP2c represses the expression of genes involved in lycopene biosynthesis by directly binding to the cis-elements in their promoters. Moreover, SlAP2c relies on its EAR motif to recruit the co-repressors TOPLESS (TPL)2/4 and forms a complex with histone deacetylase (had)1/3, thereby reducing the histone acetylation levels of lycopene biosynthesis genes. Furthermore, SlAP2a, a homolog of SlAP2c, acts upstream of SlAP2c and alleviates the SlAP2c-induced repression of lycopene biosynthesis genes by inhibiting SlAP2c transcription during fruit ripening. Therefore, we identified a transcriptional cascade mediated by AP2 family members that regulates lycopene biosynthesis during fruit ripening in tomato, laying the foundation for the manipulation of carotenoid metabolism in plants.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Duplication and sub-functionalization of flavonoid biosynthesis genes plays important role in Leguminosae root nodule symbiosis evolution
Tengfei Liu, Haiyue Liu, Wenfei Xian, Zhi Liu, Yaqin Yuan, Jingwei Fan, Shuaiying Xiang, Xia Yang, Yucheng Liu, Shulin Liu, Min Zhang, Yanting Shen, Yuannian Jiao, Shifeng Cheng, Jeff J. Doyle, Fang Xie, Jiayang Li and Zhixi Tian
J Integr Plant Biol 2024, 66 (10): 2191-2207.  
DOI: 10.1111/jipb.13743
Abstract (Browse 133)  |   Save
Gene innovation plays an essential role in trait evolution. Rhizobial symbioses, the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae, is one of the most attractive evolution events. However, the gene innovations underlying Leguminosae root nodule symbiosis (RNS) remain largely unknown. Here, we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses. We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection. Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways, particular downstream of chalcone synthase (CHS). Among them, Leguminosae-gain type Ⅱ chalcone isomerase (CHI) could be further divided into CHI1A and CHI1B clades, which resulted from the products of tandem duplication. Furthermore, the duplicated CHI genes exhibited exon–intron structural divergences evolved through exon/intron gain/loss and insertion/deletion. Knocking down CHI1B significantly reduced nodulation in Glycine max (soybean) and Medicago truncatula; whereas, knocking down its duplication gene CHI1A had no effect on nodulation. Therefore, Leguminosae-gain type Ⅱ CHI participated in RNS and the duplicated CHI1A and CHI1B genes exhibited RNS functional divergence. This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A PpEIL2/3–PpNAC1–PpWRKY14 module regulates fruit ripening by modulating ethylene production in peach
Yudi Liu, Wen Xiao, Liao Liao, Beibei Zheng, Yunpeng Cao, Yun Zhao, Ruo-Xi Zhang, Yuepeng Han
J Integr Plant Biol 2024, 66 (11): 2470-2489.  
DOI: 10.1111/jipb.13761
Abstract (Browse 133)  |   Save
WRKY transcription factors play key roles in plant resistance to various stresses, but their roles in fruit ripening remain largely unknown. Here, we report a WRKY gene PpWRKY14 involved in the regulation of fruit ripening in peach. The expression of PpWRKY14 showed an increasing trend throughout fruit development. PpWRKY14 was a target gene of PpNAC1, a master regulator of peach fruit ripening. PpWRKY14 could directly bind to the promoters of PpACS1 and PpACO1 to induce their expression, and this induction was greatly enhanced when PpWRKY14 formed a dimer with PpNAC1. However, the transcription of PpNAC1 could be directly suppressed by two EIN3/EIL1 genes, PpEIL2 and PpEIL3. The PpEIL2/3 genes were highly expressed at the early stages of fruit development, but their expression was programmed to decrease significantly during the ripening stage, thus derepressing the expression of PpNAC1. These results suggested a PpEIL2/3–PpNAC1–PpWRKY14 module that regulates fruit ripening by modulating ethylene production in peach. Our results provided an insight into the regulatory roles of EIN3/EIL1 and WRKY genes in fruit ripening.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
PROMOTIONS
Scan the QR code to view JIPB on WeChat
Follow us at @JIPBio on Twitter

PUBLISHED BY

ACKNOWLEDGEMENTS

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22