Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
  
Cas9-targeted Nanopore sequencing rapidly elucidates the transposition preferences and DNA methylation profiles of mobile elements in plants
Pavel Merkulov, Sofya Gvaramiya, Maxim Dudnikov, Roman Komakhin, Murad Omarov, Alina Kocheshkova, Zakhar Konstantinov, Alexander Soloviev, Gennady Karlov, Mikhail Divashuk and Ilya Kirov
J Integr Plant Biol 2023, 65 (10): 2242-2261.  
DOI: 10.1111/jipb.13555
Abstract (Browse 594)  |   Save
Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9-targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ (EVD) retrotransposon in wild-type Arabidopsis thaliana and rapidly obtained up to 40×sequence coverage. Analysis of hemizygous T-DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 (decrease in DNA methylation 1) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs. Finally, we detected hypomethylation of novel somatic insertions for two ONSENs. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T-DNA insertion mutants and transgenic plants.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Simple method for transformation and gene editing in medicinal plants
Xuesong Cao, Hongtao Xie, Minglei Song, Lianghui Zhao, Hailiang Liu, Guofu Li and Jian‐Kang Zhu
J Integr Plant Biol 2024, 66 (1): 17-19.  
doi: 10.1111/jipb.13593
Abstract (Browse 578)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The SlWRKY57-SlVQ21/SlVQ16 module regulates salt stress in tomato
Jilin Ma, Chonghua Li, Lulu Sun, Xuechun Ma, Hui Qiao, Wenchao Zhao, Rui Yang, Susheng Song, Shaohui Wang and Huang Huang
J Integr Plant Biol 2023, 65 (11): 2437-2455.  
DOI: 10.1111/jipb.13562
Abstract (Browse 557)  |   Save
Salt stress is a major abiotic stress which severely hinders crop production. However, the regulatory network controlling tomato resistance to salt remains unclear. Here, we found that the tomato WRKY transcription factor WRKY57 acted as a negative regulator in salt stress response by directly attenuating the transcription of salt-responsive genes (SlRD29B and SlDREB2) and an ion homeostasis gene (SlSOS1). We further identified two VQ-motif containing proteins SlVQ16 and SlVQ21 as SlWRKY57-interacting proteins. SlVQ16 positively, while SlVQ21 negatively modulated tomato resistance to salt stress. SlVQ16 and SlVQ21 competitively interacted with SlWRKY57 and antagonistically regulated the transcriptional repression activity of SlWRKY57. Additionally, the SlWRKY57-SlVQ21/SlVQ16 module was involved in the pathway of phytohormone jasmonates (JAs) by interacting with JA repressors JA-ZIM domain (JAZ) proteins. These results provide new insights into how the SlWRKY57-SlVQ21/SlVQ16 module finely tunes tomato salt tolerance.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Striking a growth–defense balance: Stress regulators that function in maize development
Shiyi Xie, Hongbing Luo, Wei Huang, Weiwei Jin and Zhaobin Dong
J Integr Plant Biol 2024, 66 (3): 424-442.  
doi: 10.1111/jipb.13570
Abstract (Browse 474)  |   Save
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
OsNAC5 orchestrates OsABI5 to fine-tune cold tolerance in rice
Ruiqing Li, Yue Song, Xueqiang Wang, Chenfan Zheng, Bo Liu, Huali Zhang, Jian Ke, Xuejing Wu, Liquan Wu, Ruifang Yang and Meng Jiang
J Integr Plant Biol 2024, 66 (4): 660-682.  
DOI: 10.1111/jipb.13585
Abstract (Browse 455)  |   Save
Due to its tropical origins, rice (Oryza sativa) is susceptible to cold stress, which poses severe threats to production. OsNAC5, a NAC-type transcription factor, participates in the cold stress response of rice, but the detailed mechanisms remain poorly understood. Here, we demonstrate that OsNAC5 positively regulates cold tolerance at germination and in seedlings by directly activating the expression of ABSCISIC ACID INSENSITIVE 5 (OsABI5). Haplotype analysis indicated that single nucleotide polymorphisms in a NAC-binding site in the OsABI5 promoter are strongly associated with cold tolerance. OsNAC5 also enhanced OsABI5 stability, thus regulating the expression of cold-responsive (COR) genes, enabling fine-tuned control of OsABI5 action for rapid, precise plant responses to cold stress. DNA affinity purification sequencing coupled with transcriptome deep sequencing identified several OsABI5 target genes involved in COR expression, including DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR 1A (OsDREB1A), OsMYB20, and PEROXIDASE 70 (OsPRX70). In vivo and in vitro analyses suggested that OsABI5 positively regulates COR gene transcription, with marked COR upregulation in OsNAC5-overexpressing lines and downregulation in osnac5 and/or osabi5 knockout mutants. This study extends our understanding of cold tolerance regulation via OsNAC5 through the OsABI5-CORs transcription module, which may be used to ameliorate cold tolerance in rice via advanced breeding.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Elucidation of the melitidin biosynthesis pathway in pummelo
Shuangqian Shen, Shouchuang Wang, Chenkun Yang, Chao Wang, Qianqian Zhou, Shen Zhou, Ran Zhang, Yufei Li, Zixuan Wang, Liupan Dai, Wenjv Peng, Yingchen Hao, Hao Guo, Guangping Cao, Xianqing Liu, Fan Yao, Qiang Xu, Alisdair R. Fernie and Jie Luo
J Integr Plant Biol 2023, 65 (11): 2505-2518.  
DOI: 10.1111/jipb.13564
Abstract (Browse 406)  |   Save
Specialized plant metabolism is a rich resource of compounds for drug discovery. The acylated flavonoid glycoside melitidin is being developed as an anti-cholesterol statin drug candidate, but its biosynthetic route in plants has not yet been fully characterized. Here, we describe the gene discovery and functional characterization of a new flavonoid gene cluster (UDP-glucuronosyltransferases (CgUGTs), 1,2 rhamnosyltransferase (Cg1,2RhaT), acyltransferases (CgATs)) that is responsible for melitidin biosynthesis in pummelo (Citrus grandis (L.) Osbeck). Population variation analysis indicated that the tailoring of acyltransferases, specific for bitter substrates, mainly determine the natural abundance of melitidin. Moreover, 3-hydroxy-3-methylglutaryl-CoA reductase enzyme inhibition assays showed that the product from this metabolic gene cluster, melitidin, may be an effective anti-cholesterol statin drug candidate. Co-expression of these clustered genes in Nicotiana benthamiana resulted in the formation of melitidin, demonstrating the potential for metabolic engineering of melitidin in a heterologous plant system. This study establishes a biosynthetic pathway for melitidin, which provides genetic resources for the breeding and genetic improvement of pummelo aimed at fortifying the content of biologically active metabolites.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development
Pengtao Wang, Wen‐Cheng Liu, Chao Han, Situ Wang, Ming‐Yi Bai and Chun‐Peng Song
J Integr Plant Biol 2024, 66 (3): 330-367.  
doi: 10.1111/jipb.13601
Abstract (Browse 367)  |   Save
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Ca2+-independent ZmCPK2 is inhibited by Ca2+-dependent ZmCPK17 during drought response in maize
Xiaoying Hu, Jinkui Cheng, Minmin Lu, Tingting Fang, Yujuan Zhu, Zhen Li, Xiqing Wang, Yu Wang, Yan Guo, Shuhua Yang, Zhizhong Gong
J Integr Plant Biol 2024, 66 (7): 1313-1333.  
DOI: 10.1111/jipb.13675
Abstract (Browse 343)  |   Save
Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca2+ can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Designing salt stress-resilient crops: Current progress and future challenges
Xiaoyan Liang, Jianfang Li, Yongqing Yang, Caifu Jiang and Yan Guo
J Integr Plant Biol 2024, 66 (3): 303-329.  
doi: 10.1111/jipb.13599
Abstract (Browse 340)  |   Save
Excess soil salinity affects large regions of land and is a major hindrance to crop production worldwide. Therefore, understanding the molecular mechanisms of plant salt tolerance has scientific importance and practical significance. In recent decades, studies have characterized hundreds of genes associated with plant responses to salt stress in different plant species. These studies have substantially advanced our molecular and genetic understanding of salt tolerance in plants and have introduced an era of molecular design breeding of salt-tolerant crops. This review summarizes our current knowledge of plant salt tolerance, emphasizing advances in elucidating the molecular mechanisms of osmotic stress tolerance, salt-ion transport and compartmentalization, oxidative stress tolerance, alkaline stress tolerance, and the trade-off between growth and salt tolerance. We also examine recent advances in understanding natural variation in the salt tolerance of crops and discuss possible strategies and challenges for designing salt stress-resilient crops. We focus on the model plant Arabidopsis (Arabidopsis thaliana) and the four most-studied crops: rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), and soybean (Glycine max).
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
OsWRKY78 regulates panicle exsertion via gibberellin signaling pathway in rice
Enyang Mei, Mingliang He, Min Xu, Jiaqi Tang, Jiali Liu, Yingxiang Liu, Zhipeng Hong, Xiufeng Li, Zhenyu Wang, Qingjie Guan, Xiaojie Tian and Qingyun Bu
J Integr Plant Biol 2024, 66 (4): 771-786.  
DOI: 10.1111/jipb.13636
Abstract (Browse 331)  |   Save
Panicle exsertion is one of the crucial agronomic traits in rice (Oryza sativa). Shortening of panicle exsertion often leads to panicle enclosure and severely reduces seed production. Gibberellin (GA) plays important roles in regulating panicle exsertion. However, the underlying mechanism and the relative regulatory network remain elusive. Here, we characterized the oswrky78 mutant showing severe panicle enclosure, and found that the defect of oswrky78 is caused by decreased bioactive GA contents. Biochemical analysis demonstrates that OsWRKY78 can directly activate GA biosynthesis and indirectly suppress GA metabolism. Moreover, we found OsWRKY78 can interact with and be phosphorylated by mitogen-activated protein kinase (MAPK) kinase OsMAPK6, and this phosphorylation can enhance OsWRKY78 stability and is necessary for its biological function. Taken together, these results not only reveal the critical function of OsWRKY78, but also reveal its mechanism via mediating crosstalk between MAPK and the GA signaling pathway in regulating panicle exsertion.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Efficient and transformation-free genome editing in pepper enabled by RNA virus-mediated delivery of CRISPR/Cas9
Chenglu Zhao, Huanhuan Lou, Qian Liu, Siqi Pei, Qiansheng Liao, Zhenghe Li
J Integr Plant Biol 2024, 66 (10): 2079-2082.  
doi: 10.1111/jipb.13741
Abstract (Browse 324)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The transcription factor NAC102 confers cadmium tolerance by regulating WAKL11 expression and cell wall pectin metabolism in Arabidopsis
Guang Hao Han, Ru Nan Huang, Li Hong Hong, Jia Xi Xu, Yi Guo Hong, Yu Huan Wu and Wei Wei Chen
J Integr Plant Biol 2023, 65 (10): 2262-2278.  
DOI: 10.1111/jipb.13557
Abstract (Browse 322)  |   Save
Cadmium (Cd) toxicity severely limits plant growth and development. Moreover, Cd accumulation in vegetables, fruits, and food crops poses health risks to animals and humans. Although the root cell wall has been implicated in Cd stress in plants, whether Cd binding by cell wall polysaccharides contributes to tolerance remains controversial, and the mechanism underlying transcriptional regulation of cell wall polysaccharide biosynthesis in response to Cd stress is unknown. Here, we functionally characterized an Arabidopsis thaliana NAC-type transcription factor, NAC102, revealing its role in Cd stress responses. Cd stress rapidly induced accumulation of NAC102.1, the major transcript encoding functional NAC102, especially in the root apex. Compared to wild type (WT) plants, a nac102 mutant exhibited enhanced Cd sensitivity, whereas NAC102.1-overexpressing plants displayed the opposite phenotype. Furthermore, NAC102 localizes to the nucleus, binds directly to the promoter of WALL-ASSOCIATED KINASE-LIKE PROTEIN11 (WAKL11), and induces transcription, thereby facilitating pectin degradation and decreasing Cd binding by pectin. Moreover, WAKL11 overexpression restored Cd tolerance in nac102 mutants to the WT levels, which was correlated with a lower pectin content and lower levels of pectin-bound Cd. Taken together, our work shows that the NAC102-WAKL11 module regulates cell wall pectin metabolism and Cd binding, thus conferring Cd tolerance in Arabidopsis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Efficient CRISPR/Cas9-mediated genome editing in sheepgrass (Leymus chinensis)
Zhelong Lin, Lei Chen, Shanjie Tang, Mengjie Zhao, Tong Li, Jia You, Changqing You, Boshu Li, Qinghua Zhao, Dongmei Zhang, Jianli Wang, Zhongbao Shen, Xianwei Song, Shuaibin Zhang and Xiaofeng Cao
J Integr Plant Biol 2023, 65 (11): 2416-2420.  
DOI: 10.1111/jipb.13567
Abstract (Browse 316)  |   Save
The lack of genome editing platforms has hampered efforts to study and improve forage crops that can be grown on lands not suited to other crops. Here, we established efficient Agrobacterium-mediated clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) genome editing in a perennial, stress-tolerant forage grass, sheepgrass (Leymus chinensis). By screening for active single-guide RNAs (sgRNAs), accessions that regenerate well, suitable Agrobacterium strains, and optimal culture media, and co-expressing the morphogenic factor TaWOX5, we achieved 11% transformation and 5.83% editing efficiency in sheepgrass. Knocking out Teosinte Branched1 (TB1) significantly increased tiller number and biomass. This study opens avenues for studying gene function and breeding in sheepgrass.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond
Fereshteh Jafari, Baobao Wang, Haiyang Wang and Junjie Zou
J Integr Plant Biol 2024, 66 (5): 849-864.  
doi: 10.1111/jipb.13603
Abstract (Browse 311)  |   Save
Maize is a major staple crop widely used as food, animal feed, and raw materials in industrial production. High-density planting is a major factor contributing to the continuous increase of maize yield. However, high planting density usually triggers a shade avoidance response and causes increased plant height and ear height, resulting in lodging and yield loss. Reduced plant height and ear height, more erect leaf angle, reduced tassel branch number, earlier flowering, and strong root system architecture are five key morphological traits required for maize adaption to high-density planting. In this review, we summarize recent advances in deciphering the genetic and molecular mechanisms of maize involved in response to high-density planting. We also discuss some strategies for breeding advanced maize cultivars with superior performance under high-density planting conditions.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The dual-action mechanism of Arabidopsis cryptochromes
Gao-Ping Qu, Bochen Jiang and Chentao Lin
J Integr Plant Biol 2024, 66 (5): 883-896.  
doi: 10.1111/jipb.13578
Abstract (Browse 309)  |   Save
Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the “Lock-and-Key” and the “Liquid-Liquid Phase Separation (LLPS)” mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Phase separation of S-RNase promotes self-incompatibility in Petunia hybrida
Huayang Tian, Hongkui Zhang, Huaqiu Huang, Yu'e Zhang and Yongbiao Xue
J Integr Plant Biol 2024, 66 (5): 986-1006.  
doi: 10.1111/jipb.13584
Abstract (Browse 303)  |   Save
Self-incompatibility (SI) is an intraspecific reproductive barrier widely present in angiosperms. The SI system with the broadest occurrence in angiosperms is based on an S-RNase linked to a cluster of multiple S-locus F-box (SLF) genes found in the Solanaceae, Plantaginaceae, Rosaceae, and Rutaceae. Recent studies reveal that non-self S-RNase is degraded by the Skip Cullin F-box (SCF)SLF-mediated ubiquitin–proteasome system in a collaborative manner in Petunia, but how self-RNase functions largely remains mysterious. Here, we show that S-RNases form S-RNase condensates (SRCs) in the self-pollen tube cytoplasm through phase separation and the disruption of SRC formation breaks SI in self-incompatible Petunia hybrida. We further find that the pistil SI factors of a small asparagine-rich protein HT-B and thioredoxin h together with a reduced state of the pollen tube all promote the expansion of SRCs, which then sequester several actin-binding proteins, including the actin polymerization factor PhABRACL, the actin polymerization activity of which is reduced by S-RNase in vitro. Meanwhile, we find that S-RNase variants lacking condensation ability fail to recruit PhABRACL and are unable to induce actin foci formation required for pollen tube growth inhibition. Taken together, our results demonstrate that phase separation of S-RNase promotes SI response in P. hybrida, revealing a new mode of S-RNase action.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
RALF22 promotes plant immunity and amplifies the Pep3 immune signal
Yu-Han He, Song-Yu Chen, Xing-Yan Chen, You-Ping Xu, Yan Liang and Xin-Zhong Cai
J Integr Plant Biol 2023, 65 (11): 2519-2534.  
DOI: 10.1111/jipb.13566
Abstract (Browse 302)  |   Save
Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen-associated molecular pattern (PAMP)-triggered immunity via suppressing PAMP-induced complex formation between the pattern recognition receptor (PRR) and its co-receptor BAK1. However, the direct and positive role of RALFs in plant immunity remains largely unknown. Herein, we report the direct and positive roles of a typical RALF, RALF22, in plant immunity. RALF22 alone directly elicited a variety of typical immune responses and triggered resistance against the devastating necrotrophic fungal pathogen Sclerotinia sclerotiorum in a FERONIA (FER)-dependent manner. LORELEI (LRE)-like glycosylphosphatidylinositol (GPI)-anchored protein 1 (LLG1) and NADPH oxidase RBOHD were required for RALF22-elicited reactive oxygen species (ROS) generation. The mutation of cysteines conserved in the C terminus of RALFs abolished, while the constitutive formation of two disulfide bridges between these cysteines promoted the RALF22-elicited ROS production and resistance against S. sclerotiorum, demonstrating the requirement of these cysteines in the functions of RALF22 in plant immunity. Furthermore, RALF22 amplified the Pep3-induced immune signal by dramatically increasing the abundance of PROPEP3 transcript and protein. Supply with RALF22 induced resistance against S. sclerotiorum in Brassica crop plants. Collectively, our results reveal that RALF22 triggers immune responses and augments the Pep3-induced immune signal in a FER-dependent manner, and exhibits the potential to be exploited as an immune elicitor in crop protection.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
Natural variation in STAYGREEN contributes to low-temperature tolerance in cucumber
Shaoyun Dong, Caixia Li, Haojie Tian, Weiping Wang, Xueyong Yang, Diane M. Beckles, Xiaoping Liu, Jiantao Guan, Xingfang Gu, Jiaqiang Sun, Han Miao and Shengping Zhang
J Integr Plant Biol 2023, 65 (12): 2552-2568.  
DOI: 10.1111/jipb.13571
Abstract (Browse 301)  |   Save
Low-temperature (LT) stress threatens cucumber production globally; however, the molecular mechanisms underlying LT tolerance in cucumber remain largely unknown. Here, using a genome-wide association study (GWAS), we found a naturally occurring single nucleotide polymorphism (SNP) in the STAYGREEN (CsSGR) coding region at the gLTT5.1 locus associated with LT tolerance. Knockout mutants of CsSGR generated by clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 exhibit enhanced LT tolerance, in particularly, increased chlorophyll (Chl) content and reduced reactive oxygen species (ROS) accumulation in response to LT. Moreover, the C-repeat Binding Factor 1 (CsCBF1) transcription factor can directly activate the expression of CsSGR. We demonstrate that the LT-sensitive haplotype CsSGRHapA, but not the LT-tolerant haplotype CsSGRHapG could interact with NON-YELLOW COLORING 1 (CsNYC1) to mediate Chl degradation. Geographic distribution of the CsSGR haplotypes indicated that the CsSGRHapG was selected in cucumber accessions from high latitudes, potentially contributing to LT tolerance during cucumber cold-adaptation in these regions. CsSGR mutants also showed enhanced tolerance to salinity, water deficit, and Pseudoperonospora cubensis, thus CsSGR is an elite target gene for breeding cucumber varieties with broad-spectrum stress tolerance. Collectively, our findings provide new insights into LT tolerance and will ultimately facilitate cucumber molecular breeding.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
ClSnRK2.3 negatively regulates watermelon fruit ripening and sugar accumulation
Jinfang Wang, Yanping Wang, Yongtao Yu, Jie Zhang, Yi Ren, Shouwei Tian, Maoying Li, Shengjin Liao, Shaogui Guo, Guoyi Gong, Haiying Zhang and Yong Xu
J Integr Plant Biol 2023, 65 (10): 2336-2348.  
DOI: 10.1111/jipb.13535
Abstract (Browse 301)  |   Save
Watermelon (Citrullus lanatus) as non-climacteric fruit is domesticated from the ancestors with inedible fruits. We previously revealed that the abscisic acid (ABA) signaling pathway gene ClSnRK2.3 might influence watermelon fruit ripening. However, the molecular mechanisms are unclear. Here, we found that the selective variation of ClSnRK2.3 resulted in lower promoter activity and gene expression level in cultivated watermelons than ancestors, which indicated ClSnRK2.3 might be a negative regulator in fruit ripening. Overexpression (OE) of ClSnRK2.3 significantly delayed watermelon fruit ripening and suppressed the accumulation of sucrose, ABA and gibberellin GA4. Furthermore, we determined that the pyrophosphate-dependent phosphofructokinase (ClPFP1) in sugar metabolism pathway and GA biosynthesis enzyme GA20 oxidase (ClGA20ox) could be phosphorylated by ClSnRK2.3 and thereby resulting in accelerated protein degradation in OE lines and finally led to low levels of sucrose and GA4. Besides that, ClSnRK2.3 phosphorylated homeodomain-leucine zipper protein (ClHAT1) and protected it from degradation to suppress the expression of the ABA biosynthesis gene 9’-cis-epoxycarotenoid dioxygenase 3 (ClNCED3). These results indicated that ClSnRK2.3 negatively regulated watermelon fruit ripening by manipulating the biosynthesis of sucrose, ABA and GA4. Altogether, these findings revealed a novel regulatory mechanism in non-climacteric fruit development and ripening.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat
Dongzhi Wang, Xiuxiu Zhang, Yuan Cao, Aamana Batool, Yongxin Xu, Yunzhou Qiao, Yongpeng Li, Hao Wang, Xuelei Lin, Xiaomin Bie, Xiansheng Zhang, Ruilian Jing, Baodi Dong, Yiping Tong, Wan Teng, Xigang Liu, Jun Xiao
J Integr Plant Biol 2024, 66 (7): 1295-1312.  
DOI: 10.1111/jipb.13670
Abstract (Browse 288)  |   Save
Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
TaCHP encoding C1-domain protein stably enhances wheat yield in saline-alkaline fields
Guilian Xiao, Minqin Wang, Xiaomeng Li, Zhengning Jiang, Hongjian Zhang, Derong Gao, Boqiao Zhang, Guangmin Xia and Mengcheng Wang
J Integr Plant Biol 2024, 66 (2): 169-171.  
doi: 10.1111/jipb.13605
Abstract (Browse 283)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Natural variation of GmFATA1B regulates seed oil content and composition in soybean
Zhandong Cai, Peiqi Xian, Yanbo Cheng, Yuan Yang, Yakun Zhang, Zihang He, Chuwen Xiong, Zhibin Guo, Zhicheng Chen, Huiqian Jiang, Qibin Ma, Hai Nian and Liangfa Ge
J Integr Plant Biol 2023, 65 (10): 2368-2379.  
DOI: 10.1111/jipb.13561
Abstract (Browse 282)  |   Save
Soybean (Glycine max) produces seeds that are rich in unsaturated fatty acids and is an important oilseed crop worldwide. Seed oil content and composition largely determine the economic value of soybean. Due to natural genetic variation, seed oil content varies substantially across soybean cultivars. Although much progress has been made in elucidating the genetic trajectory underlying fatty acid metabolism and oil biosynthesis in plants, the causal genes for many quantitative trait loci (QTLs) regulating seed oil content in soybean remain to be revealed. In this study, we identified GmFATA1B as the gene underlying a QTL that regulates seed oil content and composition, as well as seed size in soybean. Nine extra amino acids in the conserved region of GmFATA1B impair its function as a fatty acyl–acyl carrier protein thioesterase, thereby affecting seed oil content and composition. Heterogeneously overexpressing the functional GmFATA1B allele in Arabidopsis thaliana increased both the total oil content and the oleic acid and linoleic acid contents of seeds. Our findings uncover a previously unknown locus underlying variation in seed oil content in soybean and lay the foundation for improving seed oil content and composition in soybean.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A centromere map based on super pan-genome highlights the structure and function of rice centromeres
Yang Lv, Congcong Liu, Xiaoxia Li, Yueying Wang, Huiying He, Wenchuang He, Wu Chen, Longbo Yang, Xiaofan Dai, Xinglan Cao, Xiaoman Yu, Jiajia Liu, Bin Zhang, Hua Wei, Hong Zhang, Hongge Qian, Chuanlin Shi, Yue Leng, Xiangpei Liu, Mingliang Guo, Xianmeng Wang, Zhipeng Zhang, Tianyi Wang, Bintao Zhang, Qiang Xu, Yan Cui, Qianqian Zhang, Qiaoling Yuan, Noushin Jahan, Jie Ma, Xiaoming Zheng, Yongfeng Zhou, Qian Qian, Longbiao Guo and Lianguang Shang
J Integr Plant Biol 2024, 66 (2): 196-207.  
doi: 10.1111/jipb.13607
Abstract (Browse 275)  |   Save
Rice (Oryza sativa) is a significant crop worldwide with a genome shaped by various evolutionary factors. Rice centromeres are crucial for chromosome segregation, and contain some unreported genes. Due to the diverse and complex centromere region, a comprehensive understanding of rice centromere structure and function at the population level is needed. We constructed a high-quality centromere map based on the rice super pan-genome consisting of a 251-accession panel comprising both cultivated and wild species of Asian and African rice. We showed that rice centromeres have diverse satellite repeat CentO, which vary across chromosomes and subpopulations, reflecting their distinct evolutionary patterns. We also revealed that long terminal repeats (LTRs), especially young Gypsy-type LTRs, are abundant in the peripheral CentO-enriched regions and drive rice centromere expansion and evolution. Furthermore, high-quality genome assembly and complete telomere-to-telomere (T2T) reference genome enable us to obtain more centromeric genome information despite mapping and cloning of centromere genes being challenging. We investigated the association between structural variations and gene expression in the rice centromere. A centromere gene, OsMAB, which positively regulates rice tiller number, was further confirmed by expression quantitative trait loci, haplotype analysis and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 methods. By revealing the new insights into the evolutionary patterns and biological roles of rice centromeres, our finding will facilitate future research on centromere biology and crop improvement.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
An alfalfa MYB-like transcriptional factor MsMYBH positively regulates alfalfa seedling drought resistance and undergoes MsWAV3-mediated degradation
Kun Shi, Jia Liu, Huan Liang, Hongbin Dong, Jinli Zhang, Yuanhong Wei, Le Zhou, Shaopeng Wang, Jiahao Zhu, Mingshu Cao, Chris S. Jones, Dongmei Ma and Zan Wang
J Integr Plant Biol 2024, 66 (4): 683-699.  
doi: 10.1111/jipb.13626
Abstract (Browse 269)  |   Save
Drought is a major threat to alfalfa (Medicago sativa L.) production. The discovery of important alfalfa genes regulating drought response will facilitate breeding for drought-resistant alfalfa cultivars. Here, we report a genome-wide association study of drought resistance in alfalfa. We identified and functionally characterized an MYB-like transcription factor gene (MsMYBH), which increases the drought resistance in alfalfa. Compared with the wild-types, the biomass and forage quality were enhanced in MsMYBH overexpressed plants. Combined RNA-seq, proteomics and chromatin immunoprecipitation analysis showed that MsMYBH can directly bind to the promoters of MsMCP1, MsMCP2, MsPRX1A and MsCARCAB to improve their expression. The outcomes of such interactions include better water balance, high photosynthetic efficiency and scavenge excess H2O2 in response to drought. Furthermore, an E3 ubiquitin ligase (MsWAV3) was found to induce MsMYBH degradation under long-term drought, via the 26S proteasome pathway. Furthermore, variable-number tandem repeats in MsMYBH promoter were characterized among a collection of germplasms, and the variation is associated with promoter activity. Collectively, our findings shed light on the functions of MsMYBH and provide a pivotal gene that could be leveraged for breeding drought-resistant alfalfa. This discovery also offers new insights into the mechanisms of drought resistance in alfalfa.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Enhancing genetic transformation efficiency in cucurbit crops through AtGRF5 overexpression: Mechanistic insights and applications
Yang Li, Naonao Wang, Jing Feng, Yue Liu, Huihui Wang, Shijun Deng, Wenjing Dong, Xiaofeng Liu, Bingsheng Lv, Jinjing Sun, Kuipeng Xu, Huimin Zhang, Zhonghua Zhang, Sen Chai
J Integr Plant Biol 2025, 67 (7): 1843-1860.  
DOI: 10.1111/jipb.13912
Abstract (Browse 269)  |   Save
Transgenic and gene-editing technologies are essential for gene functional analysis and crop improvement. However, the pleiotropic effects and unknown mechanisms of morphogenic genes have hindered their broader application. In this study, we employed the one-step de novo shoot organogenesis (DNSO) method, and demonstrated that overexpression of the morphogenic gene Arabidopsis thanalia GROWTH-REGULATING FACTOR 5 (AtGRF5) significantly enhanced genetic transformation efficiency in cucurbit crops by promoting callus proliferation and increasing dense cells during regeneration. High-resolution time-series transcriptomics and single-cell RNA sequencing revealed that AtGRF5 overexpression induced auxin-related genes and expanded stem cell populations during cucumber DNSO. Using DNA-affinity purification sequencing (DAP-seq) in combination with spatiotemporal differential gene expression analysis, we identified CsIAA19 as a key downstream target of AtGRF5, with its modulation playing a pivotal role in regeneration. Rescuing CsIAA19 in AtGRF5-overexpressing explant reversed the enhanced callus proliferation and regeneration. To address growth defects caused by AtGRF5 overexpression, we developed an abscisic acid-inducible AtGRF5 expression system, significantly improving transformation and gene-editing efficiency across diverse genotypes while minimizing pleiotropic effects. In summary, this research provides mechanistic insights into AtGRF5-mediated transformation and offers a practical solution to overcome challenges in cucurbit crop genetic modification.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Temporal control of the Aux/IAA genes BnIAA32 and BnIAA34 mediates Brassica napus dual shade responses
Yafei Li, Yiyi Guo, Yue Cao, Pengguo Xia, Dongqing Xu, Ning Sun, Lixi Jiang and Jie Dong
J Integr Plant Biol 2024, 66 (5): 928-962.  
doi: 10.1111/jipb.13582
Abstract (Browse 266)  |   Save
Precise responses to changes in light quality are crucial for plant growth and development. For example, hypocotyls of shade-avoiding plants typically elongate under shade conditions. Although this typical shade-avoidance response (TSR) has been studied in Arabidopsis (Arabidopsis thaliana), the molecular mechanisms underlying shade tolerance are poorly understood. Here we report that B. napus (Brassica napus) seedlings exhibit dual shade responses. In addition to the TSR, B. napus seedlings also display an atypical shade response (ASR), with shorter hypocotyls upon perception of early-shade cues. Genome-wide selective sweep analysis indicated that ASR is associated with light and auxin signaling. Moreover, genetic studies demonstrated that phytochrome A (BnphyA) promotes ASR, whereas BnphyB inhibits it. During ASR, YUCCA8 expression is activated by early-shade cues, leading to increased auxin biosynthesis. This inhibits hypocotyl elongation, as young B. napus seedlings are highly sensitive to auxin. Notably, two non-canonical AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressor genes, BnIAA32 and BnIAA34, are expressed during this early stage. BnIAA32 and BnIAA34 inhibit hypocotyl elongation under shade conditions, and mutations in BnIAA32 and BnIAA34 suppress ASR. Collectively, our study demonstrates that the temporal expression of BnIAA32 and BnIAA34 determines the behavior of B. napus seedlings following shade-induced auxin biosynthesis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Multi-omics analysis reveals the evolutionary origin of diterpenoid alkaloid biosynthesis pathways in Aconitum
Dake Zhao, Ya Zhang, Huanxing Ren, Yana Shi, Ding Dong, Zonghang Li, Guanghong Cui, Yong Shen, Zongmin Mou, Edward J. Kennelly, Luqi Huang, Jue Ruan, Suiyun Chen, Diqiu Yu and Yupeng Cun
J Integr Plant Biol 2023, 65 (10): 2320-2335.  
DOI: 10.1111/jipb.13565
Abstract (Browse 263)  |   Save
Diterpenoid alkaloids (DAs) have been often utilized in clinical practice due to their analgesic and anti-inflammatory properties. Natural DAs are prevalent in the family Ranunculaceae, notably in the Aconitum genus. Nevertheless, the evolutionary origin of the biosynthesis pathway responsible for DA production remains unknown. In this study, we successfully assembled a high-quality, pseudochromosome-level genome of the DA-rich species Aconitum vilmorinianum (A. vilmorinianum) (5.76 Gb). An A. vilmorinianum-specific whole-genome duplication event was discovered using comparative genomic analysis, which may aid in the evolution of the DA biosynthesis pathway. We identified several genes involved in DA biosynthesis via integrated genomic, transcriptomic, and metabolomic analyses. These genes included enzymes encoding target ent-kaurene oxidases and aminotransferases, which facilitated the activation of diterpenes and insertion of nitrogen atoms into diterpene skeletons, thereby mediating the transformation of diterpenes into DAs. The divergence periods of these genes in A. vilmorinianum were further assessed, and it was shown that two major types of genes were involved in the establishment of the DA biosynthesis pathway. Our integrated analysis offers fresh insights into the evolutionary origin of DAs in A. vilmorinianum as well as suggestions for engineering the biosynthetic pathways to obtain desired DAs.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Plant virology in the 21st century in China: Recent advances and future directions
Jianguo Wu, Yongliang Zhang, Fangfang Li, Xiaoming Zhang, Jian Ye, Taiyun Wei, Zhenghe Li, Xiaorong Tao, Feng Cui, Xianbing Wang, Lili Zhang, Fei Yan, Shifang Li, Yule Liu, Dawei Li, Xueping Zhou and Yi Li
J Integr Plant Biol 2024, 66 (3): 579-622.  
doi: 10.1111/jipb.13580
Abstract (Browse 262)  |   Save
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
In vivo haploid induction in cauliflower, kale, and broccoli
Guixiang Wang, Mei Zong, Shuo Han, Hong Zhao, Mengmeng Duan, Xin Liu, Ning Guo, Fan Liu
J Integr Plant Biol 2024, 66 (9): 1823-1826.  
doi: 10.1111/jipb.13730
Abstract (Browse 261)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
SD-RLK28 positively regulates pollen hydration on stigmas as a PCP-Bβ receptor in Arabidopsis thaliana
Li Guo, Ziya Huang, Xingyu Chen, Min Yang, Miaomiao Yang, Ziwei Liu, Xuejie Han, Xiangjie Ma, Xiaoli Wang and Qiguo Gao
J Integr Plant Biol 2023, 65 (10): 2395-2406.  
doi: 10.1111/jipb.13547
Abstract (Browse 260)  |   Save
Pollen hydration on dry stigmas is strictly regulated by pollen–stigma interactions in Brassicaceae. Although several related molecular events have been described, the molecular mechanism underlying pollen hydration remains elusive. Multiple B-class pollen coat proteins (PCP-Bs) are involved in pollen hydration. Here, by analyzing the interactions of two PCP-Bs with three Arabidopsis thaliana stigmas strongly expressing S-domain receptor kinase (SD-RLK), we determined that SD-RLK28 directly interacts with PCP-Bβ. We investigated pollen hydration, pollen germination, pollen tube growth, and stigma receptivity in the sd-rlk28 and pcp-bβ mutants. PCP-Bβ acts in the pollen to regulate pollen hydration on stigmas. Loss of SD-RLK28 had no effect on pollen viability, and sd-rlk28 plants had normal life cycles without obvious defects. However, pollen hydration on sd-rlk28 stigmas was impaired and pollen tube growth in sd-rlk28 pistils was delayed. The defect in pollen hydration on sd-rlk28 stigmas was independent of changes in reactive oxygen species levels in stigmas. These results indicate that SD-RLK28 functions in the stigma as a PCP-Bβ receptor to positively regulate pollen hydration on dry stigmas.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A highly efficient soybean transformation system using GRF3-GIF1 chimeric protein
Ying Zhao, Peng Cheng, Ying Liu, Chunyan Liu, Zhenbang Hu, Dawei Xin, Xiaoxia Wu, Mingliang Yang, Qingshan Chen
J Integr Plant Biol 2025, 67 (1): 3-6.  
doi: 10.1111/jipb.13767
Abstract (Browse 260)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Diverse roles of MYB transcription factors in plants
Dawei Zhang, Huapeng Zhou, Yang Zhang, Yuqing Zhao, Yiyi Zhang, Xixian Feng, Honghui Lin
J Integr Plant Biol 2025, 67 (3): 539-562.  
doi: 10.1111/jipb.13869
Abstract (Browse 257)  |   Save
MYB transcription factors (TFs), one of the largest TF families in plants, are involved in various plant-specific processes as the central regulators, such as in phenylpropanoid metabolism, cell cycle, formation of root hair and trichome, phytohormones responses, reproductive growth and abiotic or biotic stress responses. Here we summarized multiple roles and explained the molecular mechanisms of MYB TFs in plant development and stress adaptation. The exploration of MYB TFs contributes to a better comprehension of molecular regulation in plant development and environmental adaptability.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Salicylic acid: The roles in plant immunity and crosstalk with other hormones
Hainan Tian, Lu Xu, Xin Li, Yuelin Zhang
J Integr Plant Biol 2025, 67 (3): 773-785.  
doi: 10.1111/jipb.13820
Abstract (Browse 256)  |   Save
Land plants use diverse hormones to coordinate their growth, development and responses against biotic and abiotic stresses. Salicylic acid (SA) is an essential hormone in plant immunity, with its levels and signaling tightly regulated to ensure a balanced immune output. Over the past three decades, molecular genetic analyses performed primarily in Arabidopsis have elucidated the biosynthesis and signal transduction pathways of key plant hormones, including abscisic acid, jasmonic acid, ethylene, auxin, cytokinin, brassinosteroids, and gibberellin. Crosstalk between different hormones has become a major focus in plant biology with the goal of obtaining a full picture of the plant hormone signaling network. This review highlights the roles of SA in plant immunity and summarizes our current understanding of the pairwise interactions of SA with other major plant hormones. The complexity of these interactions is discussed, with the hope of stimulating research to address existing knowledge gaps in hormone crosstalk, particularly in the context of balancing plant growth and defense.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
CRISPR/CasΦ2-mediated gene editing in wheat and rye
Sanzeng Zhao, Xueying Han, Yachen Zhu, Yuwei Han, Huiyun Liu, Zhen Chen, Huifang Li, Dan Wang, Chaofan Tian, Yuting Yuan, Yajie Guo, Xiaomin Si, Daowen Wang and Xiang Ji
J Integr Plant Biol 2024, 66 (4): 638-641.  
doi: 10.1111/jipb.13624
Abstract (Browse 254)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
SlBEL11 regulates flavonoid biosynthesis, thus fine-tuning auxin efflux to prevent premature fruit drop in tomato
Xiufen Dong, Xianfeng Liu, Lina Cheng, Ruizhen Li, Siqi Ge, Sai Wang, Yue Cai, Yang Liu, Sida Meng, Cai-Zhong Jiang, Chun-Lin Shi, Tianlai Li, Daqi Fu, Mingfang Qi and Tao Xu
J Integr Plant Biol 2024, 66 (4): 749-770.  
doi: 10.1111/jipb.13627
Abstract (Browse 254)  |   Save
Auxin regulates flower and fruit abscission, but how developmental signals mediate auxin transport in abscission remains unclear. Here, we reveal the role of the transcription factor BEL1-LIKE HOMEODOMAIN11 (SlBEL11) in regulating auxin transport during abscission in tomato (Solanum lycopersicum). SlBEL11 is highly expressed in the fruit abscission zone, and its expression increases during fruit development. Knockdown of SlBEL11 expression by RNA interference (RNAi) caused premature fruit drop at the breaker (Br) and 3d post-breaker (Br+3) stages of fruit development. Transcriptome and metabolome analysis of SlBEL11-RNAi lines revealed impaired flavonoid biosynthesis and decreased levels of most flavonoids, especially quercetin, which functions as an auxin transport inhibitor. This suggested that SlBEL11 prevents premature fruit abscission by modulating auxin efflux from fruits, which is crucial for the formation of an auxin response gradient. Indeed, quercetin treatment suppressed premature fruit drop in SlBEL11-RNAi plants. DNA affinity purification sequencing (DAP-seq) analysis indicated that SlBEL11 induced expression of the transcription factor gene SlMYB111 by directly binding to its promoter. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay showed that S. lycopersicum MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG111 (SlMYB111) induces the expression of the core flavonoid biosynthesis genes SlCHS1, SlCHI, SlF3H, and SlFLS by directly binding to their promoters. Our findings suggest that the SlBEL11-SlMYB111 module modulates flavonoid biosynthesis to fine-tune auxin efflux from fruits and thus maintain an auxin response gradient in the pedicel, thereby preventing premature fruit drop.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The miR159a-DUO1 module regulates pollen development by modulating auxin biosynthesis and starch metabolism in citrus
Yanhui Xu, Wenxiu Tian, Minqiang Yin, Zhenmei Cai, Li Zhang, Deyi Yuan, Hualin Yi, Juxun Wu
J Integr Plant Biol 2024, 66 (7): 1351-1369.  
DOI: 10.1111/jipb.13656
Abstract (Browse 254)  |   Save
Achieving seedlessness in citrus varieties is one of the important objectives of citrus breeding. Male sterility associated with abnormal pollen development is an important factor in seedlessness. However, our understanding of the regulatory mechanism underlying the seedlessness phenotype in citrus is still limited. Here, we determined that the miR159a-DUO1 module played an important role in regulating pollen development in citrus, which further indirectly modulated seed development and fruit size. Both the overexpression of csi-miR159a and the knocking out of DUO1 in Hong Kong kumquat (Fortunella hindsii) resulted in small and seedless fruit phenotypes. Moreover, pollen was severely aborted in both transgenic lines, with arrested pollen mitotic I and abnormal pollen starch metabolism. Through additional cross-pollination experiments, DUO1 was proven to be the key target gene for miR159a to regulate male sterility in citrus. Based on DNA affinity purification sequencing (DAP-seq), RNA-seq, and verified interaction assays, YUC2/YUC6, SS4 and STP8 were identified as downstream target genes of DUO1, those were all positively regulated by DUO1. In transgenic F. hindsii lines, the miR159a-DUO1 module down-regulated the expression of YUC2/ YUC6, which decreased indoleacetic acid (IAA) levels and modulated auxin signaling to repress pollen mitotic I. The miR159a-DUO1 module reduced the expression of the starch synthesis gene SS4 and sugar transport gene STP8 to disrupt starch metabolism in pollen. Overall, this work reveals a new mechanism by which the miR159a- DUO1 module regulates pollen development and elucidates the molecular regulatory network underlying male sterility in citrus.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Molecular breeding of tomato: Advances and challenges
Minmin Du, Chuanlong Sun, Lei Deng, Ming Zhou, Junming Li, Yongchen Du, Zhibiao Ye, Sanwen Huang, Tianlai Li, Jingquan Yu, Chang-Bao Li, Chuanyou Li
J Integr Plant Biol 2025, 67 (3): 669-721.  
doi: 10.1111/jipb.13879
Abstract (Browse 253)  |   Save
The modern cultivated tomato (Solanum lycopersicum) was domesticated from Solanum pimpinellifolium native to the Andes Mountains of South America through a “two-step domestication” process. It was introduced to Europe in the 16th century and later widely cultivated worldwide. Since the late 19th century, breeders, guided by modern genetics, breeding science, and statistical theory, have improved tomatoes into an important fruit and vegetable crop that serves both fresh consumption and processing needs, satisfying diverse consumer demands. Over the past three decades, advancements in modern crop molecular breeding technologies, represented by molecular marker technology, genome sequencing, and genome editing, have significantly transformed tomato breeding paradigms. This article reviews the research progress in the field of tomato molecular breeding, encompassing genome sequencing of germplasm resources, the identification of functional genes for agronomic traits, and the development of key molecular breeding technologies. Based on these advancements, we also discuss the major challenges and perspectives in this field.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Non-specific phospholipase C4 hydrolyzes phosphosphingolipids and phosphoglycerolipids and promotes rapeseed growth and yield
Bao Yang, Jianwu Li, Jiayu Yan, Ke Zhang, Zhewen Ouyang, Yefei Lu, Huili Wei, Qing Li, Xuan Yao, Shaoping Lu, Yueyun Hong, Xuemin Wang and Liang Guo
J Integr Plant Biol 2023, 65 (11): 2421-2436.  
DOI: 10.1111/jipb.13560
Abstract (Browse 252)  |   Save
Phosphorus is a major nutrient vital for plant growth and development, with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids. Here, we report that NON-SPECIFIC PHOSPHOLIPASE C4 (NPC4) in rapeseed (Brassica napus) releases phosphate from phospholipids to promote growth and seed yield, as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated knockout of BnaNPC4 led to elevated accumulation of phospholipids and decreased growth, whereas overexpression (OE) of BnaNPC4 resulted in lower phospholipid contents and increased plant growth and seed production. We demonstrate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro, and plants with altered BnaNPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots, with a greater change in glycerolipids than sphingolipids in leaves, particularly under phosphate deficiency conditions. In addition, BnaNPC4-OE plants led to the upregulation of genes involved in lipid metabolism, phosphate release, and phosphate transport and an increase in free inorganic phosphate in leaves. These results indicate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The DEAD-box RNA helicase ZmRH48 is required for the splicing of multiple mitochondrial introns, mitochondrial complex biosynthesis, and seed development in maize
Yan-Zhuo Yang, Shuo Ding, Xin-Yuan Liu, Chunhui Xu, Feng Sun and Bao-Cai Tan
J Integr Plant Biol 2023, 65 (11): 2456-2468.  
DOI: 10.1111/jipb.13558
Abstract (Browse 250)  |   Save
RNA helicases participate in nearly all aspects of RNA metabolism by rearranging RNAs or RNA–protein complexes in an adenosine triphosphate-dependent manner. Due to the large RNA helicase families in plants, the precise roles of many RNA helicases in plant physiology and development remain to be clarified. Here, we show that mutations in maize (Zea mays) DEAD-box RNA helicase 48 (ZmRH48) impair the splicing of mitochondrial introns, mitochondrial complex biosynthesis, and seed development. Loss of ZmRH48 function severely arrested embryogenesis and endosperm development, leading to defective kernel formation. ZmRH48 is targeted to mitochondria, where its deficiency dramatically reduced the splicing efficiency of five cis-introns (nad5 intron 1; nad7 introns 1, 2, and 3; and ccmFc intron 1) and one trans-intron (nad2 intron 2), leading to lower levels of mitochondrial complexes I and III. ZmRH48 interacts with two unique pentatricopeptide repeat (PPR) proteins, PPR-SMR1 and SPR2, which are required for the splicing of over half of all mitochondrial introns. PPR-SMR1 interacts with SPR2, and both proteins interact with P-type PPR proteins and Zm-mCSF1 to facilitate intron splicing. These results suggest that ZmRH48 is likely a component of a splicing complex and is critical for mitochondrial complex biosynthesis and seed development.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The MYB61–STRONG2 module regulates culm diameter and lodging resistance in rice
Yong Zhao, Xianpeng Wang, Jie Gao, Muhammad Abdul Rehman Rashid, Hui Wu, Qianfeng Hu, Xingming Sun, Jinjie Li, Hongliang Zhang, Peng Xu, Qian Qian, Chao Chen, Zichao Li, Zhanying Zhang
J Integr Plant Biol 2025, 67 (2): 243-257.  
DOI: 10.1111/jipb.13830
Abstract (Browse 250)  |   Save
Lodging reduces grain yield and quality in cereal crops. Lodging resistance is affected by the strength of the culm, which is influenced by the culm diameter, culm wall thickness, and cell wall composition. To explore the genetic architecture of culm diameter in rice (Oryza sativa), we conducted a genome-wide association study (GWAS). We identified STRONG CULM 2 (STRONG2), which encodes the mannan synthase CSLA5, and showed that plants that overexpressed this gene had increased culm diameter and improved lodging resistance. STRONG2 appears to increase the levels of cell wall components, such as mannose and cellulose, thereby enhancing sclerenchyma development in stems. SNP14931253 in the STRONG2 promoter contributes to variation in STRONG2 expression in natural germplasms and the transcription factor MYB61 directly activates STRONG2 expression. Furthermore, STRONG2 overexpressing plants produced significantly more grains per panicle and heavier grains than the wild-type plants. These results demonstrate that the MYB61–STRONG2 module positively regulates culm diameter and lodging resistance, information that could guide breeding efforts for improved yield in rice.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
PROMOTIONS
Scan the QR code to view JIPB on WeChat
Follow us at @JIPBio on Twitter

PUBLISHED BY

ACKNOWLEDGEMENTS

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22