Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
  
TaTIP41 and TaTAP46 positively regulate drought tolerance in wheat by inhibiting PP2A activity
Jianhui Ma, Yuke Geng, Hong Liu, Mengqi Zhang, Shujuan Liu, Chenyang Hao, Jian Hou, Youfu Zhang, Daijing Zhang, Weijun Zhang, Xueyong Zhang and Tian Li
J Integr Plant Biol 2023, 65 (9): 2056-2070.  
DOI: 10.1111/jipb.13542
Abstract (Browse 842)  |   Save
Drought is a major environmental stress limiting global wheat (Triticum aestivum) production. Exploring drought tolerance genes is important for improving drought adaptation in this crop. Here, we cloned and characterized TaTIP41, a novel drought tolerance gene in wheat. TaTIP41 is a putative conserved component of target of rapamycin (TOR) signaling, and the TaTIP41 homoeologs were expressed in response to drought stress and abscisic acid (ABA). The overexpression of TaTIP41 enhanced drought tolerance and the ABA response, including ABA-induced stomatal closure, while its downregulation using RNA interference (RNAi) had the opposite effect. Furthermore, TaTIP41 physically interacted with TaTAP46, another conserved component of TOR signaling. Like TaTIP41, TaTAP46 positively regulated drought tolerance. Furthermore, TaTIP41 and TaTAP46 interacted with type-2A protein phosphatase (PP2A) catalytic subunits, such as TaPP2A-2, and inhibited their enzymatic activities. Silencing TaPP2A-2 improved drought tolerance in wheat. Together, our findings provide new insights into the roles of TaTIP41 and TaTAP46 in the drought tolerance and ABA response in wheat, and their potential application in improving wheat environmental adaptability.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
Histone deacetylase OsHDA706 increases salt tolerance via H4K5/K8 deacetylation of OsPP2C49 in rice
Kai Liu, Jijin Chen, Shang Sun, Xu Chen, Xinru Zhao, Yingying Hu, Guoxiao Qi, Xiya Li, Bo Xu, Jun Miao, Chao Xue, Yong Zhou and Zhiyun Gong
J Integr Plant Biol 2023, 65 (6): 1394-1407.  
DOI: 10.1111/jipb.13470
Abstract (Browse 610)  |   Save
High salt is a major environmental factor that threatens plant growth and development. Increasing evidence indicates that histone acetylation is involved in plant responses to various abiotic stress; however, the underlying epigenetic regulatory mechanisms remain poorly understood. In this study, we revealed that the histone deacetylase OsHDA706 epigenetically regulates the expression of salt stress response genes in rice (Oryza sativa L.). OsHDA706 localizes to the nucleus and cytoplasm and OsHDA706 expression is significantly induced under salt stress. Moreover, oshda706 mutants showed a higher sensitivity to salt stress than the wild-type. In vivo and in vitro enzymatic activity assays demonstrated that OsHDA706 specifically regulates the deacetylation of lysines 5 and 8 on histone H4 (H4K5 and H4K8). By combining chromatin immunoprecipitation and mRNA sequencing, we identified the clade A protein phosphatase 2 C gene, OsPP2C49, which is involved in the salt response as a direct target of H4K5 and H4K8 acetylation. We found that the expression of OsPP2C49 is induced in the oshda706 mutant under salt stress. Furthermore, the knockout of OsPP2C49 enhances plant tolerance to salt stress, while its overexpression has the opposite effect. Taken together, our results indicate that OsHDA706, a histone H4 deacetylase, participates in the salt stress response by regulating the expression of OsPP2C49 via H4K5 and H4K8 deacetylation.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
ESCRT-III component OsSNF7.2 modulates leaf rolling by trafficking and endosomal degradation of auxin biosynthetic enzyme OsYUC8 in rice
Liang Zhou, Saihua Chen, Maohong Cai, Song Cui, Yulong Ren, Xinyue Zhang, Tianzhen Liu, Chunlei Zhou, Xin Jin, Limin Zhang, Minxi Wu, Shuyi Zhang, Zhijun Cheng, Xin Zhang, Cailin Lei, Qibing Lin, Xiuping Guo, Jie Wang, Zhichao Zhao, Ling Jiang, Shanshan Zhu and Jianmin Wan
J Integr Plant Biol 2023, 65 (6): 1408-1422.  
DOI: 10.1111/jipb.13460
Abstract (Browse 583)  |   Save
The endosomal sorting complex required for transport (ESCRT) is highly conserved in eukaryotic cells and plays an essential role in the biogenesis of multivesicular bodies and cargo degradation to the plant vacuole or lysosomes. Although ESCRT components affect a variety of plant growth and development processes, their impact on leaf development is rarely reported. Here, we found that OsSNF7.2, an ESCRT-III component, controls leaf rolling in rice (Oryza sativa). The Ossnf7.2 mutant rolled leaf 17 (rl17) has adaxially rolled leaves due to the decreased number and size of the bulliform cells. OsSNF7.2 is expressed ubiquitously in all tissues, and its protein is localized in the endosomal compartments. OsSNF7.2 homologs, including OsSNF7, OsSNF7.3, and OsSNF7.4, can physically interact with OsSNF7.2, but their single mutation did not result in leaf rolling. Other ESCRT complex subunits, namely OsVPS20, OsVPS24, and OsBRO1, also interact with OsSNF7.2. Further assays revealed that OsSNF7.2 interacts with OsYUC8 and aids its vacuolar degradation. Both Osyuc8 and rl17 Osyuc8 showed rolled leaves, indicating that OsYUC8 and OsSNF7.2 function in the same pathway, conferring leaf development. This study reveals a new biological function for the ESCRT-III components, and provides new insights into the molecular mechanisms underlying leaf rolling.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(4)
  
Transcription factor GLK1 promotes anthocyanin biosynthesis via an MBW complex-dependent pathway in Arabidopsis thaliana
Yan Li, Wei Lei, Zuxu Zhou, Yanlin Li, Dawei Zhang and Honghui Lin
J Integr Plant Biol 2023, 65 (6): 1521-1535.  
DOI: 10.1111/jipb.13471
Abstract (Browse 556)  |   Save
Anthocyanins are important natural plant pigments and play diverse roles in plant growth and adaptation. Anthocyanins function as screens to protect photosynthetic tissues from photoinhibition. However, the regulatory mechanisms underlying the biosynthesis and spatial accumulation pattern of anthocyanins remain some unresolved issues. Here, we demonstrate that the GARP-type transcription factor GOLDEN2-LIKE 1 (GLK1) functions as a positive factor in anthocyanin accumulation. GLK1 enhances the transcriptional activation activities of MYB75, MYB90, and MYB113 via direct protein- protein interactions to increase the expression of anthocyanin-specific biosynthetic genes. Anthocyanins accumulate in an acropetal manner in Arabidopsis. We also found that the expression pattern of GLK1 overall mimicked the accumulation pattern of anthocyanin from the base of the main stem to the shoot apex. Based on these findings, we established a working model for the role of GLK1 in anthocyanin accumulation and propose that GLK1 mediates the spatial distribution pattern of anthocyanins by affecting the transcriptional activation activities of MYB75, MYB90, and MYB113.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(2)
  
Cas9-targeted Nanopore sequencing rapidly elucidates the transposition preferences and DNA methylation profiles of mobile elements in plants
Pavel Merkulov, Sofya Gvaramiya, Maxim Dudnikov, Roman Komakhin, Murad Omarov, Alina Kocheshkova, Zakhar Konstantinov, Alexander Soloviev, Gennady Karlov, Mikhail Divashuk and Ilya Kirov
J Integr Plant Biol 2023, 65 (10): 2242-2261.  
DOI: 10.1111/jipb.13555
Abstract (Browse 555)  |   Save
Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9-targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ (EVD) retrotransposon in wild-type Arabidopsis thaliana and rapidly obtained up to 40×sequence coverage. Analysis of hemizygous T-DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 (decrease in DNA methylation 1) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs. Finally, we detected hypomethylation of novel somatic insertions for two ONSENs. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T-DNA insertion mutants and transgenic plants.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Simple method for transformation and gene editing in medicinal plants
Xuesong Cao, Hongtao Xie, Minglei Song, Lianghui Zhao, Hailiang Liu, Guofu Li and Jian‐Kang Zhu
J Integr Plant Biol 2024, 66 (1): 17-19.  
doi: 10.1111/jipb.13593
Abstract (Browse 536)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The basic helix-loop-helix transcription factor gene, OsbHLH38, plays a key role in controlling rice salt tolerance
Fengping Du, Yinxiao Wang, Juan Wang, Yingbo Li, Yue Zhang, Xiuqin Zhao, Jianlong Xu, Zhikang Li, Tianyong Zhao, Wensheng Wang and Binying Fu
J Integr Plant Biol 2023, 65 (8): 1859-1873.  
doi: 10.1111/jipb.13489
Abstract (Browse 524)  |   Save
The plant hormone abscisic acid (ABA) is crucial for plant seed germination and abiotic stress tolerance. However, the association between ABA sensitivity and plant abiotic stress tolerance remains largely unknown. In this study, 436 rice accessions were assessed for their sensitivity to ABA during seed germination. The considerable diversity in ABA sensitivity among rice germplasm accessions was primarily reflected by the differentiation between the Xian (indica) and Geng (japonica) subspecies and between the upland-Geng and lowland-Geng ecotypes. The upland-Geng accessions were most sensitive to ABA. Genome-wide association analyses identified four major quantitative trait loci containing 21 candidate genes associated with ABA sensitivity of which a basic helix-loop-helix transcription factor gene, OsbHLH38, was the most important for ABA sensitivity. Comprehensive functional analyses using knockout and overexpression transgenic lines revealed that OsbHLH38 expression was responsive to multiple abiotic stresses. Overexpression of OsbHLH38 increased seedling salt tolerance, while knockout of OsbHLH38 increased sensitivity to salt stress. A salt-responsive transcription factor, OsDREB2A, interacted with OsbHLH38 and was directly regulated by OsbHLH38. Moreover, OsbHLH38 affected rice abiotic stress tolerance by mediating the expression of a large set of transporter genes of phytohormones, transcription factor genes, and many downstream genes with diverse functions, including photosynthesis, redox homeostasis, and abiotic stress responsiveness. These results demonstrated that OsbHLH38 is a key regulator in plant abiotic stress tolerance.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(2)
  
OsWR2 recruits HDA704 to regulate the deacetylation of H4K8ac in the promoter of OsABI5 in response to drought stress
Yalu Guo, Yiqing Tan, Minghao Qu, Kai Hong, Longjun Zeng, Lei Wang, Chuxiong Zhuang, Qian Qian, Jiang Hu and Guosheng Xiong
J Integr Plant Biol 2023, 65 (7): 1651-1669.  
DOI: 10.1111/jipb.13481
Abstract (Browse 513)  |   Save
Drought stress is a major environmental factor that limits the growth, development, and yield of rice (Oryza sativa L.). Histone deacetylases (HDACs) are involved in the regulation of drought stress responses. HDA704 is an RPD3/HDA1 class HDAC that mediates the deacetylation of H4K8 (lysine 8 of histone H4) for drought tolerance in rice. In this study, we show that plants overexpressing HDA704 (HDA704-OE) are resistant to drought stress and sensitive to abscisic acid (ABA), whereas HDA704 knockout mutant (hda704) plants displayed decreased drought tolerance and ABA sensitivity. Transcriptome analysis revealed that HDA704 regulates the expression of ABA-related genes in response to drought stress. Moreover, HDA704 was recruited by a drought-resistant transcription factor, WAX SYNTHESIS REGULATORY 2 (OsWR2), and co-regulated the expression of the ABA biosynthesis genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), NCED4, and NCED5 under drought stress. HDA704 also repressed the expression of ABA-INSENSITIVE 5 (OsABI5) and DWARF AND SMALL SEED 1 (OsDSS1) by regulating H4K8ac levels in the promoter regions in response to polyethylene glycol 6000 treatment. In agreement, the loss of OsABI5 function increased resistance to dehydration stress in rice. Our results demonstrate that HDA704 is a positive regulator of the drought stress response and offers avenues for improving drought resistance in rice.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The SlWRKY57-SlVQ21/SlVQ16 module regulates salt stress in tomato
Jilin Ma, Chonghua Li, Lulu Sun, Xuechun Ma, Hui Qiao, Wenchao Zhao, Rui Yang, Susheng Song, Shaohui Wang and Huang Huang
J Integr Plant Biol 2023, 65 (11): 2437-2455.  
DOI: 10.1111/jipb.13562
Abstract (Browse 510)  |   Save
Salt stress is a major abiotic stress which severely hinders crop production. However, the regulatory network controlling tomato resistance to salt remains unclear. Here, we found that the tomato WRKY transcription factor WRKY57 acted as a negative regulator in salt stress response by directly attenuating the transcription of salt-responsive genes (SlRD29B and SlDREB2) and an ion homeostasis gene (SlSOS1). We further identified two VQ-motif containing proteins SlVQ16 and SlVQ21 as SlWRKY57-interacting proteins. SlVQ16 positively, while SlVQ21 negatively modulated tomato resistance to salt stress. SlVQ16 and SlVQ21 competitively interacted with SlWRKY57 and antagonistically regulated the transcriptional repression activity of SlWRKY57. Additionally, the SlWRKY57-SlVQ21/SlVQ16 module was involved in the pathway of phytohormone jasmonates (JAs) by interacting with JA repressors JA-ZIM domain (JAZ) proteins. These results provide new insights into how the SlWRKY57-SlVQ21/SlVQ16 module finely tunes tomato salt tolerance.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The F-box protein SHORT PRIMARY ROOT modulates primary root meristem activity by targeting SEUSS-LIKE protein for degradation in rice
Nini Ma, Nian Li, Zhongmao Yu, Chunli Chen, Dao‐Xiu Zhou and Yu Zhao
J Integr Plant Biol 2023, 65 (8): 1937-1949.  
DOI: 10.1111/jipb.13492
Abstract (Browse 495)  |   Save
Root meristem activity is essential for root morphogenesis and adaptation, but the molecular mechanism regulating root meristem activity is not fully understood. Here, we identify an F-box family E3 ubiquitin ligase named SHORT PRIMARY ROOT (SHPR) that regulates primary root (PR) meristem activity and cell proliferation in rice. SHPR loss-of-function mutations impair PR elongation in rice. SHPR is involved in the formation of an SCF complex with the Oryza sativa SKP1-like protein OSK1/20. We show that SHPR interacts with Oryza sativa SEUSS-LIKE (OsSLK) in the nucleus and is required for OsSLK polyubiquitination and degradation by the ubiquitin 26S-proteasome system (UPS). Transgenic plants overexpressing OsSLK display a shorter PR phenotype, which is similar to the SHPR loss-of-function mutants. Genetic analysis suggests that SHPR promotes PR elongation in an OsSLK-dependent manner. Collectively, our study establishes SHPR as an E3 ubiquitin ligase that targets OsSLK for degradation, and uncovers a protein ubiquitination pathway as a mechanism for modulating root meristem activity in rice.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Phosphorylation of the LCB1 subunit of Arabidopsis serine palmitoyltransferase stimulates its activity and modulates sphingolipid biosynthesis
Yuan Li, Hanwei Cao, Tingting Dong, Xiaoke Wang, Liang Ma, Kun Li, Huiqiang Lou, Chun-Peng Song and Dongtao Ren
J Integr Plant Biol 2023, 65 (6): 1585-1601.  
DOI: 10.1111/jipb.13461
Abstract (Browse 475)  |   Save
Sphingolipids are the structural components of membrane lipid bilayers and act as signaling molecules in many cellular processes. Serine palmitoyltransferase (SPT) is the first committed and rate-limiting enzyme in the de novo sphingolipids biosynthetic pathway. The core SPT enzyme is a heterodimer consisting of LONG-CHAIN BASE1 (LCB1) and LCB2 subunits. SPT activity is inhibited by orosomucoid proteins and stimulated by small subunits of SPT (ssSPTs). However, whether LCB1 is modified and how such modification might regulate SPT activity have to date been unclear. Here, we show that activation of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6 by upstream MKK9 and treatment with Flg22 (a pathogen-associated molecular pattern) increases SPT activity and induces the accumulation of sphingosine long-chain base t18:0 in Arabidopsis thaliana, with activated MPK3 and MPK6 phosphorylating AtLCB1. Phosphorylation of AtLCB1 strengthened its binding with AtLCB2b, promoted its binding with ssSPTs, and stimulated the formation of higher order oligomeric and active SPT complexes. Our findings therefore suggest a novel regulatory mechanism for SPT activity.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
GmJAZ3 interacts with GmRR18a and GmMYC2a to regulate seed traits in soybean
Yang Hu, Yue Liu, Jian‐Jun Tao, Long Lu, Zhi‐Hao Jiang, Jun‐Jie Wei, Chun‐Mei Wu, Cui‐Cui Yin, Wei Li, Ying‐Dong Bi, Yong‐Cai Lai, Wei Wei, Wan‐Ke Zhang, Shou‐Yi Chen and Jin‐Song Zhang
J Integr Plant Biol 2023, 65 (8): 1983-2000.  
doi: 10.1111/jipb.13494
Abstract (Browse 451)  |   Save
Seed weight is usually associated with seed size and is one of the important agronomic traits that determine yield. Understanding of seed weight control is limited, especially in soybean plants. Here we show that Glycine max JASMONATE-ZIM DOMAIN 3 (GmJAZ3), a gene identified through gene co-expression network analysis, regulates seed-related traits in soybean. Overexpression of GmJAZ3 promotes seed size/weight and other organ sizes in stable transgenic soybean plants likely by increasing cell proliferation. GmJAZ3 interacted with both G. max RESPONSE REGULATOR 18a (GmRR18a) and GmMYC2a to inhibit their transcriptional activation of cytokinin oxidase gene G. max CYTOKININ OXIDASE 3-4 (GmCKX3-4), which usually affects seed traits. Meanwhile, the GmRR18a binds to the promoter of GmMYC2a and activates GmMYC2a gene expression. In GmJAZ3-overexpressing soybean seeds, the protein contents were increased while the fatty acid contents were reduced compared to those in the control seeds, indicating that the GmJAZ3 affects seed size/weight and compositions. Natural variation in JAZ3 promoter region was further analyzed and Hap3 promoter correlates with higher promoter activity, higher gene expression and higher seed weight. The Hap3 promoter may be selected and fixed during soybean domestication. JAZ3 orthologs from other plants/crops may also control seed size and weight. Taken together, our study reveals a novel molecular module GmJAZ3-GmRR18a/GmMYC2a-GmCKXs for seed size and weight control, providing promising targets during soybean molecular breeding for better seed traits.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(3)
  
Artificial evolution of OsEPSPS through an improved dual cytosine and adenine base editor generated a novel allele conferring rice glyphosate tolerance
Chen Zhang, Xue Zhong, Shaoya Li, Lei Yan, Jingying Li, Yubing He, Yong Lin, Yangjun Zhang and Lanqin Xia
J Integr Plant Biol 2023, 65 (9): 2194-2203.  
doi: 10.1111/jipb.13543
Abstract (Browse 434)  |   Save
Exploiting novel endogenous glyphosate-tolerant alleles is highly desirable and has promising potential for weed control in rice breeding. Here, through fusions of different effective cytosine and adenine deaminases with nCas9-NG, we engineered an effective surrogate two-component composite base editing system, STCBE-2, with improved C-to-T and A-to-G base editing efficiency and expanded the editing window. Furthermore, we targeted a rice endogenous OsEPSPS gene for artificial evolution through STCBE-2-mediated near-saturated mutagenesis. After hygromycin and glyphosate selection, we identified a novel OsEPSPS allele with an Asp-213-Asn (D213N) mutation (OsEPSPS-D213N) in the predicted glyphosate-binding domain, which conferred rice plants reliable glyphosate tolerance and had not been reported or applied in rice breeding. Collectively, we developed a novel dual base editor which will be valuable for artificial evolution of important genes in crops. And the novel glyphosate-tolerant rice germplasm generated in this study will benefit weeds management in rice paddy fields.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Conserved noncoding sequences correlate with distant gene contacts in Arabidopsis and Brassica
Lei Zhang, Jian Wu, Jianli Liang, Runmao Lin, Chao Sun, Qirui Dai, Lupeng Zhang, Huiling Guo, Ranze Zhao and Xiaowu Wang
J Integr Plant Biol 2023, 65 (6): 1467-1478.  
doi: 10.1111/jipb.13465
Abstract (Browse 423)  |   Save
Physical contact between genes distant on chromosomes is a potentially important way for genes to coordinate their expressions. To investigate the potential importance of distant contacts, we performed high-throughput chromatin conformation capture (Hi-C) experiments on leaf nuclei isolated from Brassica rapa and Brassica oleracea. We then combined our results with published Hi-C data from Arabidopsis thaliana. We found that distant genes come into physical contact and do so preferentially between the proximal promoter of one gene and the downstream region of another gene. Genes with higher numbers of conserved noncoding sequences (CNSs) nearby were more likely to have contact with distant genes. With more CNSs came higher numbers of transcription factor binding sites and more histone modifications associated with the activity. In addition, for the genes we studied, distant contacting genes with CNSs were more likely to be transcriptionally coordinated. These observations suggest that CNSs may enrich active histone modifications and recruit transcription factors, correlating with distant contacts to ensure coordinated expression. This study advances our knowledge of gene contacts and provides insights into the relationship between CNSs and distant gene contacts in plants.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Striking a growth–defense balance: Stress regulators that function in maize development
Shiyi Xie, Hongbing Luo, Wei Huang, Weiwei Jin and Zhaobin Dong
J Integr Plant Biol 2024, 66 (3): 424-442.  
doi: 10.1111/jipb.13570
Abstract (Browse 422)  |   Save
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
NIGT1 represses plant growth and mitigates phosphate starvation signaling to balance the growth response tradeoff in rice
Yuxin Zhang, Qianqian Zhang, Meina Guo, Xueqing Wang, Tianjie Li, Qingyu Wu, Lihui Li, Keke Yi and Wenyuan Ruan
J Integr Plant Biol 2023, 65 (8): 1874-1889.  
doi: 10.1111/jipb.13496
Abstract (Browse 415)  |   Save
Inorganic phosphate (Pi) availability is an important factor which affects the growth and yield of crops, thus an appropriate and effective response to Pi fluctuation is critical. However, how crops orchestrate Pi signaling and growth under Pi starvation conditions to optimize the growth defense tradeoff remains unclear. Here we show that a Pi starvation-induced transcription factor NIGT1 (NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1) controls plant growth and prevents a hyper-response to Pi starvation by directly repressing the expression of growth-related and Pi-signaling genes to achieve a balance between growth and response under a varying Pi environment. NIGT1 directly binds to the promoters of Pi starvation signaling marker genes, like IPS1, miR827, and SPX2, under Pi-deficient conditions to mitigate the Pi-starvation responsive (PSR). It also directly represses the expression of vacuolar Pi efflux transporter genes VPE1/2 to regulate plant Pi homeostasis. We further demonstrate that NIGT1 constrains shoot growth by repressing the expression of growth-related regulatory genes, including brassinolide signal transduction master regulator BZR1, cell division regulator CYCB1;1, and DNA replication regulator PSF3. Our findings reveal the function of NIGT1 in orchestrating plant growth and Pi starvation signaling, and also provide evidence that NIGT1 acts as a safeguard to avoid hyper-response during Pi starvation stress in rice.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The Sm core protein SmEb regulates salt stress responses through maintaining proper splicing of RCD1 pre-mRNA in Arabidopsis
Yechun Hong, Yang Gao, Jia Pang, Huazhong Shi, Tingting Li, Huiying Meng, Dali Kong, Yunjuan Chen, Jian-Kang Zhu and Zhen Wang
J Integr Plant Biol 2023, 65 (6): 1383-1393.  
DOI: 10.1111/jipb.13457
Abstract (Browse 405)  |   Save
Salt stress adversely impacts crop production. Several spliceosome components have been implicated in regulating salt stress responses in plants, however, the underlying molecular basis is still unclear. Here we report that the spliceosomal core protein SmEb is essential to salt tolerance in Arabidopsis. Transcriptome analysis showed that SmEb modulates alternative splicing of hundreds of pre-mRNAs in plant response to salt stress. Further study revealed that SmEb is crucial in maintaining proper ratio of two RCD1 splicing variants (RCD1.1/ RCD1.2) important for salt stress response. In addition, RCD1.1 but not RCD1.2 is able to interact with the stress regulators and attenuates salt- sensitivity by decreasing salt-induced cell death in smeb-1 mutant. Together, our findings uncovered the essential role of SmEb in the regulation of alternative pre-mRNA splicing in salt stress response.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
CPR5 positively regulates pattern-triggered immunity via a mediator protein
Miaomiao Ma, Meng Li, Rongfang Zhou, Jian‐Bin Yu, Ying Wu, Xiaojuan Zhang, Jinlong Wang, Jian‐Min Zhou and Xiangxiu Liang
J Integr Plant Biol 2023, 65 (7): 1613-1619.  
doi: 10.1111/jipb.13472
Abstract (Browse 391)  |   Save
Plant cells possess a two-layered immune system consisting of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), mediated by cell surface pattern-recognition receptors and intracellular nucleotide-binding leucine-rich repeat receptors (NLRs), respectively. The CONSTITUTIVE EXPRESSION OF PR GENES 5 (CPR5) nuclear pore complex protein negatively regulates ETI, including ETI-associated hypersensitive response. Here, we show that CPR5 is essential for the activation of various PTI responses in Arabidopsis, such as resistance to the non-adapted bacterium Pseudomonas syringae pv. tomato DC3000 hrcC-. In a forward-genetic screen for suppressors of cpr5, we identified the mediator protein MED4. Mutation of MED4 in cpr5 greatly restored the defective PTI of cpr5. Our findings reveal that CPR5 plays opposite roles in regulating PTI and ETI, and genetically regulates PTI via MED4.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
OsNAC5 orchestrates OsABI5 to fine-tune cold tolerance in rice
Ruiqing Li, Yue Song, Xueqiang Wang, Chenfan Zheng, Bo Liu, Huali Zhang, Jian Ke, Xuejing Wu, Liquan Wu, Ruifang Yang and Meng Jiang
J Integr Plant Biol 2024, 66 (4): 660-682.  
DOI: 10.1111/jipb.13585
Abstract (Browse 388)  |   Save
Due to its tropical origins, rice (Oryza sativa) is susceptible to cold stress, which poses severe threats to production. OsNAC5, a NAC-type transcription factor, participates in the cold stress response of rice, but the detailed mechanisms remain poorly understood. Here, we demonstrate that OsNAC5 positively regulates cold tolerance at germination and in seedlings by directly activating the expression of ABSCISIC ACID INSENSITIVE 5 (OsABI5). Haplotype analysis indicated that single nucleotide polymorphisms in a NAC-binding site in the OsABI5 promoter are strongly associated with cold tolerance. OsNAC5 also enhanced OsABI5 stability, thus regulating the expression of cold-responsive (COR) genes, enabling fine-tuned control of OsABI5 action for rapid, precise plant responses to cold stress. DNA affinity purification sequencing coupled with transcriptome deep sequencing identified several OsABI5 target genes involved in COR expression, including DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR 1A (OsDREB1A), OsMYB20, and PEROXIDASE 70 (OsPRX70). In vivo and in vitro analyses suggested that OsABI5 positively regulates COR gene transcription, with marked COR upregulation in OsNAC5-overexpressing lines and downregulation in osnac5 and/or osabi5 knockout mutants. This study extends our understanding of cold tolerance regulation via OsNAC5 through the OsABI5-CORs transcription module, which may be used to ameliorate cold tolerance in rice via advanced breeding.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Regulation of FLC nuclear import by coordinated action of the NUP62-subcomplex and importin β SAD2
Gang Chen, Danyun Xu, Qing Liu, Zhichuang Yue, Biao Dai, Shujuan Pan, Yongqiang Chen, Xinhua Feng and Honghong Hu
J Integr Plant Biol 2023, 65 (9): 2086-2106.  
DOI: 10.1111/jipb.13540
Abstract (Browse 364)  |   Save
Flowering locus C (FLC) is a central transcriptional repressor that controls flowering time. However, how FLC is imported into the nucleus is unknown. Here, we report that Arabidopsis nucleoporins 62 (NUP62), NUP58, and NUP54 composed NUP62-subcomplex modulates FLC nuclear import during floral transition in an importin α-independent manner, via direct interaction. NUP62 recruits FLC to the cytoplasmic filaments and imports it into the nucleus through the NUP62-subcomplex composed central channel. Importin β supersensitive to ABA and drought 2 (SAD2), a carrier protein, is critical for FLC nuclear import and flower transition, which facilitates FLC import into the nucleus mainly through the NUP62-subcomplex. Proteomics, RNA-seq, and cell biological analyses indicate that the NUP62-subcomplex mainly mediates the nuclear import of cargos with unconventional nuclear localization sequences (NLSs), such as FLC. Our findings illustrate the mechanisms of the NUP62-subcomplex and SAD2 on FLC nuclear import process and floral transition, and provide insights into the role of NUP62-subcomplex and SAD2 in protein nucleocytoplasmic transport in plants.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Elucidation of the melitidin biosynthesis pathway in pummelo
Shuangqian Shen, Shouchuang Wang, Chenkun Yang, Chao Wang, Qianqian Zhou, Shen Zhou, Ran Zhang, Yufei Li, Zixuan Wang, Liupan Dai, Wenjv Peng, Yingchen Hao, Hao Guo, Guangping Cao, Xianqing Liu, Fan Yao, Qiang Xu, Alisdair R. Fernie and Jie Luo
J Integr Plant Biol 2023, 65 (11): 2505-2518.  
DOI: 10.1111/jipb.13564
Abstract (Browse 361)  |   Save
Specialized plant metabolism is a rich resource of compounds for drug discovery. The acylated flavonoid glycoside melitidin is being developed as an anti-cholesterol statin drug candidate, but its biosynthetic route in plants has not yet been fully characterized. Here, we describe the gene discovery and functional characterization of a new flavonoid gene cluster (UDP-glucuronosyltransferases (CgUGTs), 1,2 rhamnosyltransferase (Cg1,2RhaT), acyltransferases (CgATs)) that is responsible for melitidin biosynthesis in pummelo (Citrus grandis (L.) Osbeck). Population variation analysis indicated that the tailoring of acyltransferases, specific for bitter substrates, mainly determine the natural abundance of melitidin. Moreover, 3-hydroxy-3-methylglutaryl-CoA reductase enzyme inhibition assays showed that the product from this metabolic gene cluster, melitidin, may be an effective anti-cholesterol statin drug candidate. Co-expression of these clustered genes in Nicotiana benthamiana resulted in the formation of melitidin, demonstrating the potential for metabolic engineering of melitidin in a heterologous plant system. This study establishes a biosynthetic pathway for melitidin, which provides genetic resources for the breeding and genetic improvement of pummelo aimed at fortifying the content of biologically active metabolites.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
DIW1 encoding a clade I PP2C phosphatase negatively regulates drought tolerance by de-phosphorylating TaSnRK1.1 in wheat
Jingyi Wang, Chaonan Li, Long Li, Lifeng Gao, Ge Hu, Yanfei Zhang, Matthew P. Reynolds, Xueyong Zhang, Jizeng Jia, Xinguo Mao and Ruilian Jing
J Integr Plant Biol 2023, 65 (8): 1918-1936.  
doi: 10.1111/jipb.13504
Abstract (Browse 358)  |   Save
Drought seriously impacts wheat production (Triticum aestivum L.), while the exploitation and utilization of genes for drought tolerance are insufficient. Leaf wilting is a direct reflection of drought tolerance in plants. Clade A PP2Cs are abscisic acid (ABA) co-receptors playing vital roles in the ABA signaling pathway, regulating drought response. However, the roles of other clade PP2Cs in drought tolerance, especially in wheat, remain largely unknown. Here, we identified a gain-of-function drought-induced wilting 1 (DIW1) gene from the wheat Aikang 58 mutant library by map-based cloning, which encodes a clade I protein phosphatase 2C (TaPP2C158) with enhanced protein phosphatase activity. Phenotypic analysis of overexpression and CRISPR/Cas9 mutant lines demonstrated that DIW1/TaPP2C158 is a negative regulator responsible for drought resistance. We found that TaPP2C158 directly interacts with TaSnRK1.1 and de-phosphorylates it, thus inactivating the TaSnRK1.1–TaAREB3 pathway. TaPP2C158 protein phosphatase activity is negatively correlated with ABA signaling. Association analysis suggested that C-terminal variation of TaPP2C158 changing protein phosphatase activity is highly correlated with the canopy temperature, and seedling survival rate under drought stress. Our data suggest that the favorable allele with lower phosphatase activity of TaPP2C158 has been positively selected in Chinese breeding history. This work benefits us in understanding the molecular mechanism of wheat drought tolerance, and provides elite genetic resources and molecular markers for improving wheat drought tolerance.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
CRISPR/Cas9-mediated editing of GmTAP1 confers enhanced resistance to Phytophthora sojae in soybean
Tengfei Liu, Jing Ji, Yuanyuan Cheng, Sicong Zhang, Zeru Wang, Kaixuan Duan and Yuanchao Wang
J Integr Plant Biol 2023, 65 (7): 1609-1612.  
doi: 10.1111/jipb.13476
Abstract (Browse 316)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(3)
  
Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development
Pengtao Wang, Wen‐Cheng Liu, Chao Han, Situ Wang, Ming‐Yi Bai and Chun‐Peng Song
J Integr Plant Biol 2024, 66 (3): 330-367.  
doi: 10.1111/jipb.13601
Abstract (Browse 311)  |   Save
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
GSK3 regulates VRN1 to control flowering time in wheat
Guoqing Cui, Danping Li, Lichao Zhang, Chuan Xia, Xiuying Kong and Xu Liu
J Integr Plant Biol 2023, 65 (7): 1605-1608.  
doi: 10.1111/jipb.13507
Abstract (Browse 307)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A high-resolution transcriptomic atlas depicting nitrogen fixation and nodule development in soybean
Baocheng Sun, Yu Wang, Qun Yang, Han Gao, Haiyu Niu, Yansong Li, Qun Ma, Qing Huan, Wenfeng Qian and Bo Ren
J Integr Plant Biol 2023, 65 (6): 1536-1552.  
doi: 10.1111/jipb.13495
Abstract (Browse 302)  |   Save
Although root nodules are essential for biological nitrogen fixation in legumes, the cell types and molecular regulatory mechanisms contributing to nodule development and nitrogen fixation in determinate nodule legumes, such as soybean (Glycine max), remain incompletely understood. Here, we generated a single-nucleus resolution transcriptomic atlas of soybean roots and nodules at 14 days post inoculation (dpi) and annotated 17 major cell types, including six that are specific to nodules. We identified the specific cell types responsible for each step in the ureides synthesis pathway, which enables spatial compartmentalization of biochemical reactions during soybean nitrogen fixation. By utilizing RNA velocity analysis, we reconstructed the differentiation dynamics of soybean nodules, which differs from those of indeterminate nodules in Medicago truncatula. Moreover, we identified several putative regulators of soybean nodulation and two of these genes, GmbHLH93 and GmSCL1, were as-yet uncharacterized in soybean. Overexpression of each gene in soybean hairy root systems validated their respective roles in nodulation. Notably, enrichment for cytokinin-related genes in soybean nodules led to identification of the cytokinin receptor, GmCRE1, as a prominent component of the nodulation pathway. GmCRE1 knockout in soybean resulted in a striking nodule phenotype with decreased nitrogen fixation zone and depletion of leghemoglobins, accompanied by downregulation of nodule-specific gene expression, as well as almost complete abrogation of biological nitrogen fixation. In summary, this study provides a comprehensive perspective of the cellular landscape during soybean nodulation, shedding light on the underlying metabolic and developmental mechanisms of soybean nodule formation.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The brassinosteroid signaling component SlBZR1 promotes tomato fruit ripening and carotenoid accumulation
Fanliang Meng, Haoran Liu, Songshen Hu, Chengguo Jia, Min Zhang, Songwen Li, Yuanyuan Li, Jiayao Lin, Yue Jian, Mengyu Wang, Zhiyong Shao, Yuanyu Mao, Lihong Liu and Qiaomei Wang
J Integr Plant Biol 2023, 65 (7): 1794-1813.  
doi: 10.1111/jipb.13491
Abstract (Browse 300)  |   Save
The plant hormone ethylene is essential for climacteric fruit ripening, although it is unclear how other phytohormones and their interactions with ethylene might affect fruit ripening. Here, we explored how brassinosteroids (BRs) regulate fruit ripening in tomato (Solanum lycopersicum) and how they interact with ethylene. Exogenous BR treatment and increased endogenous BR contents in tomato plants overexpressing the BR biosynthetic gene SlCYP90B3 promoted ethylene production and fruit ripening. Genetic analysis indicated that the BR signaling regulators Brassinazole-resistant1 (SlBZR1) and BRI1-EMS-suppressor1 (SlBES1) act redundantly in fruit softening. Knocking out SlBZR1 inhibited ripening through transcriptome reprogramming at the onset of ripening. Combined transcriptome deep sequencing and chromatin immunoprecipitation followed by sequencing identified 73 SlBZR1-repressed targets and 203 SlBZR1-induced targets involving major ripening-related genes, suggesting that SlBZR1 positively regulates tomato fruit ripening. SlBZR1 directly targeted several ethylene and carotenoid biosynthetic genes to contribute to the ethylene burst and carotenoid accumulation to ensure normal ripening and quality formation. Furthermore, knock-out of Brassinosteroid-insensitive2 (SlBIN2), a negative regulator of BR signaling upstream of SlBZR1, promoted fruit ripening and carotenoid accumulation. Taken together, our results highlight the role of SlBZR1 as a master regulator of tomato fruit ripening with potential for tomato quality improvement and carotenoid biofortification.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(2)
  
An ARF24-ZmArf2 module influences kernel size in different maize haplotypes
Jie Gao, Long Zhang, Haonan Du, Yongbin Dong, Sihan Zhen, Chen Wang, Qilei Wang, Jingyu Yang, Paifeng Zhang, Xu Zheng and Yuling Li
J Integr Plant Biol 2023, 65 (7): 1767-1781.  
DOI: 10.1111/jipb.13473
Abstract (Browse 295)  |   Save
Members of the ADP-ribosylation factor family, which are GTP-binding proteins, are involved in metabolite transport, cell division, and expansion. Although there has been a significant amount of research on small GTP-binding proteins, their roles and functions in regulating maize kernel size remain elusive. Here, we identified ZmArf2 as a maize ADP-ribosylation factor-like family member that is highly conserved during evolution. Maize zmarf2 mutants showed a characteristic smaller kernel size. Conversely, ZmArf2 overexpression increased maize kernel size. Furthermore, heterologous expression of ZmArf2 dramatically elevated Arabidopsis and yeast growth by promoting cell division. Using expression quantitative trait loci (eQTL) analysis, we determined that ZmArf2 expression levels in various lines were mainly associated with variation at the gene locus. The promoters of ZmArf2 genes could be divided into two types, pS and pL, that were significantly associated with both ZmArf2 expression levels and kernel size. In yeast-one-hybrid screening, maize Auxin Response Factor 24 (ARF24) is directly bound to the ZmArf2 promoter region and negatively regulated ZmArf2 expression. Notably, the pS and pL promoter types each contained an ARF24 binding element: an auxin response element (AuxRE) in pS and an auxin response region (AuxRR) in pL, respectively. ARF24 binding affinity to AuxRR was much higher compared with AuxRE. Overall, our results establish that the small G-protein ZmArf2 positively regulates maize kernel size and reveals the mechanism of its expression regulation.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
High-quality Fagopyrum esculentum genome provides insights into the flavonoid accumulation among different tissues and self-incompatibility
Qiang He, Dan Ma, Wei Li, Longsheng Xing, Hongyu Zhang, Yu Wang, Cailian Du, Xuanzhao Li, Zheng Jia, Xiuxiu Li, Jianan Liu, Ze Liu, Yuqing Miao, Rui Feng, Yang Lv, Meijia Wang, Hongwei Lu, Xiaochen Li, Yao Xiao, Ruyu Wang, Hanfei Liang, Qinghong Zhou, Lijun Zhang, Chengzhi Liang and Huilong Du
J Integr Plant Biol 2023, 65 (6): 1423-1441.  
doi: 10.1111/jipb.13459
Abstract (Browse 294)  |   Save
Common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (Fagopyrum tataricum), the two most widely cultivated buckwheat species, differ greatly in flavonoid content and reproductive mode. Here, we report the first high-quality and chromosome-level genome assembly of common buckwheat with 1.2 Gb. Comparative genomic analysis revealed that common buckwheat underwent a burst of long terminal repeat retrotransposons insertion accompanied by numerous large chromosome rearrangements after divergence from Tartary buckwheat. Moreover, multiple gene families involved in stress tolerance and flavonoid biosynthesis such as multidrug and toxic compound extrusion (MATE) and chalcone synthase (CHS) underwent significant expansion in buckwheat, especially in common buckwheat. Integrated multi-omics analysis identified high expression of catechin biosynthesis-related genes in flower and seed in common buckwheat and high expression of rutin biosynthesis-related genes in seed in Tartary buckwheat as being important for the differences in flavonoid type and content between these buckwheat species. We also identified a candidate key rutin- degrading enzyme gene (Ft8.2377) that was highly expressed in Tartary buckwheat seed. In addition, we identified a haplotype-resolved candidate locus containing many genes reportedly associated with the development of flower and pollen, which was potentially related to self-incompatibility in common buckwheat. Our study provides important resources facilitating future functional genomics-related research of flavonoid biosynthesis and self- incompatibility in buckwheat.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(5)
  
α-Ketoglutarate dehydrogenase (KGDH): A new balancer between energy metabolism and gene expression in plants
Wenwen Zhu and Yikun He
J Integr Plant Biol 2023, 65 (8): 1843-1845.  
doi: 10.1111/jipb.13544
Abstract (Browse 290)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The transcription factor NAC102 confers cadmium tolerance by regulating WAKL11 expression and cell wall pectin metabolism in Arabidopsis
Guang Hao Han, Ru Nan Huang, Li Hong Hong, Jia Xi Xu, Yi Guo Hong, Yu Huan Wu and Wei Wei Chen
J Integr Plant Biol 2023, 65 (10): 2262-2278.  
DOI: 10.1111/jipb.13557
Abstract (Browse 285)  |   Save
Cadmium (Cd) toxicity severely limits plant growth and development. Moreover, Cd accumulation in vegetables, fruits, and food crops poses health risks to animals and humans. Although the root cell wall has been implicated in Cd stress in plants, whether Cd binding by cell wall polysaccharides contributes to tolerance remains controversial, and the mechanism underlying transcriptional regulation of cell wall polysaccharide biosynthesis in response to Cd stress is unknown. Here, we functionally characterized an Arabidopsis thaliana NAC-type transcription factor, NAC102, revealing its role in Cd stress responses. Cd stress rapidly induced accumulation of NAC102.1, the major transcript encoding functional NAC102, especially in the root apex. Compared to wild type (WT) plants, a nac102 mutant exhibited enhanced Cd sensitivity, whereas NAC102.1-overexpressing plants displayed the opposite phenotype. Furthermore, NAC102 localizes to the nucleus, binds directly to the promoter of WALL-ASSOCIATED KINASE-LIKE PROTEIN11 (WAKL11), and induces transcription, thereby facilitating pectin degradation and decreasing Cd binding by pectin. Moreover, WAKL11 overexpression restored Cd tolerance in nac102 mutants to the WT levels, which was correlated with a lower pectin content and lower levels of pectin-bound Cd. Taken together, our work shows that the NAC102-WAKL11 module regulates cell wall pectin metabolism and Cd binding, thus conferring Cd tolerance in Arabidopsis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The alleviation of ammonium toxicity in plants
Chengbin Xiao, Yuan Fang, Suomin Wang and Kai He
J Integr Plant Biol 2023, 65 (6): 1362-1368.  
doi: 10.1111/jipb.13467
Abstract (Browse 284)  |   Save
Nitrogen (N) is an essential macronutrient for plants and profoundly affects crop yields and qualities. Ammonium (NH4+) and nitrate (NO3?) are major inorganic N forms absorbed by plants from the surrounding environments. Intriguingly, NH4+ is usually toxic to plants when it serves as the sole or dominant N source. It is thus important for plants to coordinate the utilization of NH4+ and the alleviation of NH4+ toxicity. To fully decipher the molecular mechanisms underlying how plants minimize NH4+ toxicity may broadly benefit agricultural practice. In the current minireview, we attempt to discuss recent discoveries in the strategies for mitigating NH4+ toxicity in plants, which may provide potential solutions for improving the nitrogen use efficiency (NUE) and stress adaptions in crops.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(5)
  
Ca2+-independent ZmCPK2 is inhibited by Ca2+-dependent ZmCPK17 during drought response in maize
Xiaoying Hu, Jinkui Cheng, Minmin Lu, Tingting Fang, Yujuan Zhu, Zhen Li, Xiqing Wang, Yu Wang, Yan Guo, Shuhua Yang, Zhizhong Gong
J Integr Plant Biol 2024, 66 (7): 1313-1333.  
DOI: 10.1111/jipb.13675
Abstract (Browse 284)  |   Save
Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca2+ can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The E3 ubiquitin ligase SINA1 and the protein kinase BIN2 cooperatively regulate PHR1 in apple anthocyanin biosynthesis
Jian‐Ping An, Hong‐Liang Li, Zhi‐Ying Liu, Da‐Ru Wang, Chun‐Xiang You and Yuepeng Han
J Integr Plant Biol 2023, 65 (9): 2175-2193.  
DOI: 10.1111/jipb.13538
Abstract (Browse 283)  |   Save
PHR1 (PHOSPHATE STARVATION RESPONSE1) plays key roles in the inorganic phosphate (Pi) starvation response and in Pi deficiency-induced anthocyanin biosynthesis in plants. However, the post-translational regulation of PHR1 is unclear, and the molecular basis of PHR1-mediated anthocyanin biosynthesis remains elusive. In this study, we determined that MdPHR1 was essential for Pi deficiency-induced anthocyanin accumulation in apple (Malus×domestica). MdPHR1 interacted with MdWRKY75, a positive regulator of anthocyanin biosynthesis, to enhance the MdWRKY75-activated transcription of MdMYB1, leading to anthocyanin accumulation. In addition, the E3 ubiquitin ligase SEVEN IN ABSENTIA1 (MdSINA1) negatively regulated MdPHR1-promoted anthocyanin biosynthesis via the ubiquitination-mediated degradation of MdPHR1. Moreover, the protein kinase apple BRASSINOSTEROID INSENSITIVE2 (MdBIN2) phosphorylated MdPHR1 and positively regulated MdPHR1-mediated anthocyanin accumulation by attenuating the MdSINA1-mediated ubiquitination degradation of MdPHR1. Taken together, these findings not only demonstrate the regulatory role of MdPHR1 in Pi starvation induced anthocyanin accumulation, but also provide an insight into the post-translational regulation of PHR1.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Development of an efficient expression system with large cargo capacity for interrogation of gene function in bamboo based on bamboo mosaic virus
Yandong Jin, Baijie Wang, Mingchuan Bao, Yujie Li, Shengwu Xiao, Yuhua Wang, Jun Zhang, Liangzhen Zhao, Hangxiao Zhang, Yau-Heiu Hsu, Mingjie Li and Lianfeng Gu
J Integr Plant Biol 2023, 65 (6): 1369-1382.  
DOI: 10.1111/jipb.13468
Abstract (Browse 280)  |   Save
Bamboo is one of the fastest growing plants among monocotyledonous species and is grown extensively in subtropical regions. Although bamboo has high economic value and produces much biomass quickly, gene functional research is hindered by the low efficiency of genetic transformation in this species. We therefore explored the potential of a bamboo mosaic virus (BaMV)- mediated expression system to investigate genotype-phenotype associations. We determined that the sites between the triple gene block proteins (TGBps) and the coat protein (CP) of BaMV are the most efficient insertion sites for the expression of exogenous genes in both monopodial and sympodial bamboo species. Moreover, we validated this system by individually overexpressing the two endogenous genes ACE1 and DEC1, which resulted in the promotion and suppression of internode elongation, respectively. In particular, this system was able to drive the expression of three 2A-linked betalain biosynthesis genes (more than 4 kb in length) to produce betalain, indicating that it has high cargo capacity and may provide the prerequisite basis for the development of a DNA-free bamboo genome editing platform in the future. Since BaMV can infect multiple bamboo species, we anticipate that the system described in this study will greatly contribute to gene function research and further promote the molecular breeding of bamboo.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
AtMAC stabilizes the phragmoplast by crosslinking microtubules and actin filaments during cytokinesis
Pingzhou Du, Yu Liu, Lu Deng, Dong Qian, Xiuhua Xue, Ting Yang, Tonghui Li, Yun Xiang and Haiyun Ren
J Integr Plant Biol 2023, 65 (8): 1950-1965.  
doi: 10.1111/jipb.13497
Abstract (Browse 278)  |   Save
The phragmoplast, a structure crucial for the completion of cytokinesis in plant cells, is composed of antiparallel microtubules (MTs) and actin filaments (AFs). However, how the parallel structure of phragmoplast MTs and AFs is maintained, especially during centrifugal phragmoplast expansion, remains elusive. Here, we analyzed a new Arabidopsis thaliana MT and AF crosslinking protein (AtMAC). When AtMAC was deleted, the phragmoplast showed disintegrity during centrifugal expansion, and the resulting phragmoplast fragmentation led to incomplete cell plates. Overexpression of AtMAC increased the resistance of phragmoplasts to depolymerization and caused the formation of additional phragmoplasts during cytokinesis. Biochemical experiments showed that AtMAC crosslinked MTs and AFs in vitro, and the truncated AtMAC protein, N-CC1, was the key domain controlling the ability of AtMAC. Further analysis showed that N-CC1(51–154) is the key domain for binding MTs, and N-CC1(51–125) for binding AFs. In conclusion, AtMAC is the novel MT and AF crosslinking protein found to be involved in regulation of phragmoplast organization during centrifugal phragmoplast expansion, which is required for complete cytokinesis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
Auxin signaling module OsSK41-OsIAA10-OsARF regulates grain yield traits in rice
Fuying Ma, Fan Zhang, Yu Zhu, Dengyong Lan, Peiwen Yan, Ying Wang, Zejun Hu, Xinwei Zhang, Jian Hu, Fuan Niu, Mingyu Liu, Shicong He, Jinhao Cui, Xinyu Yuan, Ying Yan, Shujun Wu, Liming Cao, Hongwu Bian, Jinshui Yang, Zhikang Li and Xiaojin Luo
J Integr Plant Biol 2023, 65 (7): 1753-1766.  
doi: 10.1111/jipb.13484
Abstract (Browse 275)  |   Save
Auxin is an important phytohormone in plants, and auxin signaling pathways in rice play key roles in regulating its growth, development, and productivity. To investigate how rice grain yield traits are regulated by auxin signaling pathways and to facilitate their application in rice improvement, we validated the functional relationships among regulatory genes such as OsIAA10, OsSK41, and OsARF21 that are involved in one of the auxin (OsIAA10) signaling pathways. We assessed the phenotypic effects of these genes on several grain yield traits across two environments using knockout and/or overexpression transgenic lines. Based on the results, we constructed a model that showed how grain yield traits were regulated by OsIAA10 and OsTIR1, OsAFB2, and OsSK41 and OsmiR393 in the OsSK41-OsIAA10-OsARF module and by OsARF21 in the transcriptional regulation of downstream auxin response genes in the OsSK41-OsIAA10-OsARF module. The population genomic analyses revealed rich genetic diversity and the presence of major functional alleles at most of these loci in rice populations. The strong differentiation of many major alleles between Xian/indica and Geng/japonica subspecies and/or among modern varieties and landraces suggested that they contributed to improved productivity during evolution and breeding. We identified several important aspects associated with the genetic and molecular bases of rice grain and yield traits that were regulated by auxin signaling pathways. We also suggested rice auxin response factor (OsARF) activators as candidate target genes for improving specific target traits by overexpression and/or editing subspecies-specific alleles and by searching and pyramiding the ‘best’ gene allelic combinations at multiple regulatory genes in auxin signaling pathways in rice breeding programs.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Zinc-finger protein GmZF351 improves both salt and drought stress tolerance in soybean
Wei Wei, Long Lu, Xiao‐Hua Bian, Qing‐Tian Li, Jia‐Qi Han, Jian‐Jun Tao, Cui‐Cui Yin, Yong‐Cai Lai, Wei Li, Ying‐Dong Bi, Wei‐Qun Man, Shou‐Yi Chen, Jin‐Song Zhang and Wan‐Ke Zhang
J Integr Plant Biol 2023, 65 (7): 1636-1650.  
doi: 10.1111/jipb.13474
Abstract (Browse 275)  |   Save
Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(4)
  
A cell wall invertase modulates resistance to fusarium crown rot and sharp eyespot in common wheat
Guoguo Lv, Yixiao Zhang, Lin Ma, Xiangning Yan, Mingjie Yuan, Jianhui Chen, Yongzhen Cheng, Xi Yang, Qi Qiao, Leilei Zhang, Mohsin Niaz, Xiaonan Sun, Qijun Zhang, Shaobin Zhong and Feng Chen
J Integr Plant Biol 2023, 65 (7): 1814-1825.  
DOI: 10.1111/jipb.13478
Abstract (Browse 274)  |   Save
Fusarium crown rot (FCR) and sharp eyespot (SE) are serious soil-borne diseases in wheat and its relatives that have been reported to cause wheat yield losses in many areas. In this study, the expression of a cell wall invertase gene, TaCWI-B1, was identified to be associated with FCR resistance through a combination of bulk segregant RNA sequencing and genome resequencing in a recombinant inbred line population. Two bi-parental populations were developed to further verify TaCWI-B1 association with FCR resistance. Overexpression lines and ethyl methanesulfonate (EMS) mutants revealed TaCWI-B1 positively regulating FCR resistance. Determination of cell wall thickness and components showed that the TaCWI-B1-overexpression lines exhibited considerably increased thickness and pectin and cellulose contents. Furthermore, we found that TaCWI-B1 directly interacted with an alpha-galactosidase (TaGAL). EMS mutants showed that TaGAL negatively modulated FCR resistance. The expression of TaGAL is negatively correlated with TaCWI-B1 levels, thus may reduce mannan degradation in the cell wall, consequently leading to thickening of the cell wall. Additionally, TaCWI-B1-overexpression lines and TaGAL mutants showed higher resistance to SE; however, TaCWI-B1 mutants were more susceptible to SE than controls. This study provides insights into a FCR and SE resistance gene to combat soil-borne diseases in common wheat.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Phylotranscriptomics of Swertiinae (Gentianaceae) reveals that key floral traits are not phylogenetically correlated
Chunlin Chen, Brad R. Ruhfel, Jialiang Li, Zefu Wang, Lushui Zhang, Lei Zhang, Xingxing Mao, Ji Wang, Dashan He, Yue Luo, Quanjun Hu, Yuanwen Duan, Xiaoting Xu, Zhenxiang Xi and Jianquan Liu
J Integr Plant Biol 2023, 65 (6): 1490-1504.  
doi: 10.1111/jipb.13464
Abstract (Browse 273)  |   Save
Establishing how lineages with similar traits are phylogenetically related remains critical for understanding the origin of biodiversity on Earth. Floral traits in plants are widely used to explore phylogenetic relationships and to delineate taxonomic groups. The subtribe Swertiinae (Gentianaceae) comprises more than 350 species with high floral diversity ranging from rotate to tubular corollas and possessing diverse nectaries. Here we performed phylogenetic analysis of 60 species from all 15 genera of the subtribe Swertiinae sensu Ho and Liu, representing the range of floral diversity, using data from the nuclear and plastid genomes. Extensive topological conflicts were present between the nuclear and plastome trees. Three of the 15 genera represented by multiple species are polyphyletic in both trees. Key floral traits including corolla type, absence or presence of lobe scales, nectary type, nectary position, and stigma type are randomly distributed in the nuclear and plastome trees without phylogenetic correlation. We also revealed the likely ancient hybrid origin of one large clade comprising 10 genera with diverse floral traits. These results highlight the complex evolutionary history of this subtribe. The phylogenies constructed here provide a basic framework for further exploring the ecological and genetic mechanisms underlying both species diversification and floral diversity.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(2)
PROMOTIONS
Scan the QR code to view JIPB on WeChat
Follow us at @JIPBio on Twitter

PUBLISHED BY

ACKNOWLEDGEMENTS

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22