Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
  
Simple method for transformation and gene editing in medicinal plants
Xuesong Cao, Hongtao Xie, Minglei Song, Lianghui Zhao, Hailiang Liu, Guofu Li and Jian‐Kang Zhu
J Integr Plant Biol 2024, 66 (1): 17-19.  
doi: 10.1111/jipb.13593
Abstract (Browse 621)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Striking a growth–defense balance: Stress regulators that function in maize development
Shiyi Xie, Hongbing Luo, Wei Huang, Weiwei Jin and Zhaobin Dong
J Integr Plant Biol 2024, 66 (3): 424-442.  
doi: 10.1111/jipb.13570
Abstract (Browse 521)  |   Save
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
OsNAC5 orchestrates OsABI5 to fine-tune cold tolerance in rice
Ruiqing Li, Yue Song, Xueqiang Wang, Chenfan Zheng, Bo Liu, Huali Zhang, Jian Ke, Xuejing Wu, Liquan Wu, Ruifang Yang and Meng Jiang
J Integr Plant Biol 2024, 66 (4): 660-682.  
DOI: 10.1111/jipb.13585
Abstract (Browse 507)  |   Save
Due to its tropical origins, rice (Oryza sativa) is susceptible to cold stress, which poses severe threats to production. OsNAC5, a NAC-type transcription factor, participates in the cold stress response of rice, but the detailed mechanisms remain poorly understood. Here, we demonstrate that OsNAC5 positively regulates cold tolerance at germination and in seedlings by directly activating the expression of ABSCISIC ACID INSENSITIVE 5 (OsABI5). Haplotype analysis indicated that single nucleotide polymorphisms in a NAC-binding site in the OsABI5 promoter are strongly associated with cold tolerance. OsNAC5 also enhanced OsABI5 stability, thus regulating the expression of cold-responsive (COR) genes, enabling fine-tuned control of OsABI5 action for rapid, precise plant responses to cold stress. DNA affinity purification sequencing coupled with transcriptome deep sequencing identified several OsABI5 target genes involved in COR expression, including DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR 1A (OsDREB1A), OsMYB20, and PEROXIDASE 70 (OsPRX70). In vivo and in vitro analyses suggested that OsABI5 positively regulates COR gene transcription, with marked COR upregulation in OsNAC5-overexpressing lines and downregulation in osnac5 and/or osabi5 knockout mutants. This study extends our understanding of cold tolerance regulation via OsNAC5 through the OsABI5-CORs transcription module, which may be used to ameliorate cold tolerance in rice via advanced breeding.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development
Pengtao Wang, Wen‐Cheng Liu, Chao Han, Situ Wang, Ming‐Yi Bai and Chun‐Peng Song
J Integr Plant Biol 2024, 66 (3): 330-367.  
doi: 10.1111/jipb.13601
Abstract (Browse 429)  |   Save
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Ca2+-independent ZmCPK2 is inhibited by Ca2+-dependent ZmCPK17 during drought response in maize
Xiaoying Hu, Jinkui Cheng, Minmin Lu, Tingting Fang, Yujuan Zhu, Zhen Li, Xiqing Wang, Yu Wang, Yan Guo, Shuhua Yang, Zhizhong Gong
J Integr Plant Biol 2024, 66 (7): 1313-1333.  
DOI: 10.1111/jipb.13675
Abstract (Browse 390)  |   Save
Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca2+ can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Designing salt stress-resilient crops: Current progress and future challenges
Xiaoyan Liang, Jianfang Li, Yongqing Yang, Caifu Jiang and Yan Guo
J Integr Plant Biol 2024, 66 (3): 303-329.  
doi: 10.1111/jipb.13599
Abstract (Browse 389)  |   Save
Excess soil salinity affects large regions of land and is a major hindrance to crop production worldwide. Therefore, understanding the molecular mechanisms of plant salt tolerance has scientific importance and practical significance. In recent decades, studies have characterized hundreds of genes associated with plant responses to salt stress in different plant species. These studies have substantially advanced our molecular and genetic understanding of salt tolerance in plants and have introduced an era of molecular design breeding of salt-tolerant crops. This review summarizes our current knowledge of plant salt tolerance, emphasizing advances in elucidating the molecular mechanisms of osmotic stress tolerance, salt-ion transport and compartmentalization, oxidative stress tolerance, alkaline stress tolerance, and the trade-off between growth and salt tolerance. We also examine recent advances in understanding natural variation in the salt tolerance of crops and discuss possible strategies and challenges for designing salt stress-resilient crops. We focus on the model plant Arabidopsis (Arabidopsis thaliana) and the four most-studied crops: rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), and soybean (Glycine max).
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Efficient and transformation-free genome editing in pepper enabled by RNA virus-mediated delivery of CRISPR/Cas9
Chenglu Zhao, Huanhuan Lou, Qian Liu, Siqi Pei, Qiansheng Liao, Zhenghe Li
J Integr Plant Biol 2024, 66 (10): 2079-2082.  
doi: 10.1111/jipb.13741
Abstract (Browse 389)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Enhancing genetic transformation efficiency in cucurbit crops through AtGRF5 overexpression: Mechanistic insights and applications
Yang Li, Naonao Wang, Jing Feng, Yue Liu, Huihui Wang, Shijun Deng, Wenjing Dong, Xiaofeng Liu, Bingsheng Lv, Jinjing Sun, Kuipeng Xu, Huimin Zhang, Zhonghua Zhang, Sen Chai
J Integr Plant Biol 2025, 67 (7): 1843-1860.  
DOI: 10.1111/jipb.13912
Abstract (Browse 383)  |   Save
Transgenic and gene-editing technologies are essential for gene functional analysis and crop improvement. However, the pleiotropic effects and unknown mechanisms of morphogenic genes have hindered their broader application. In this study, we employed the one-step de novo shoot organogenesis (DNSO) method, and demonstrated that overexpression of the morphogenic gene Arabidopsis thanalia GROWTH-REGULATING FACTOR 5 (AtGRF5) significantly enhanced genetic transformation efficiency in cucurbit crops by promoting callus proliferation and increasing dense cells during regeneration. High-resolution time-series transcriptomics and single-cell RNA sequencing revealed that AtGRF5 overexpression induced auxin-related genes and expanded stem cell populations during cucumber DNSO. Using DNA-affinity purification sequencing (DAP-seq) in combination with spatiotemporal differential gene expression analysis, we identified CsIAA19 as a key downstream target of AtGRF5, with its modulation playing a pivotal role in regeneration. Rescuing CsIAA19 in AtGRF5-overexpressing explant reversed the enhanced callus proliferation and regeneration. To address growth defects caused by AtGRF5 overexpression, we developed an abscisic acid-inducible AtGRF5 expression system, significantly improving transformation and gene-editing efficiency across diverse genotypes while minimizing pleiotropic effects. In summary, this research provides mechanistic insights into AtGRF5-mediated transformation and offers a practical solution to overcome challenges in cucurbit crop genetic modification.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond
Fereshteh Jafari, Baobao Wang, Haiyang Wang and Junjie Zou
J Integr Plant Biol 2024, 66 (5): 849-864.  
doi: 10.1111/jipb.13603
Abstract (Browse 377)  |   Save
Maize is a major staple crop widely used as food, animal feed, and raw materials in industrial production. High-density planting is a major factor contributing to the continuous increase of maize yield. However, high planting density usually triggers a shade avoidance response and causes increased plant height and ear height, resulting in lodging and yield loss. Reduced plant height and ear height, more erect leaf angle, reduced tassel branch number, earlier flowering, and strong root system architecture are five key morphological traits required for maize adaption to high-density planting. In this review, we summarize recent advances in deciphering the genetic and molecular mechanisms of maize involved in response to high-density planting. We also discuss some strategies for breeding advanced maize cultivars with superior performance under high-density planting conditions.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
OsWRKY78 regulates panicle exsertion via gibberellin signaling pathway in rice
Enyang Mei, Mingliang He, Min Xu, Jiaqi Tang, Jiali Liu, Yingxiang Liu, Zhipeng Hong, Xiufeng Li, Zhenyu Wang, Qingjie Guan, Xiaojie Tian and Qingyun Bu
J Integr Plant Biol 2024, 66 (4): 771-786.  
DOI: 10.1111/jipb.13636
Abstract (Browse 373)  |   Save
Panicle exsertion is one of the crucial agronomic traits in rice (Oryza sativa). Shortening of panicle exsertion often leads to panicle enclosure and severely reduces seed production. Gibberellin (GA) plays important roles in regulating panicle exsertion. However, the underlying mechanism and the relative regulatory network remain elusive. Here, we characterized the oswrky78 mutant showing severe panicle enclosure, and found that the defect of oswrky78 is caused by decreased bioactive GA contents. Biochemical analysis demonstrates that OsWRKY78 can directly activate GA biosynthesis and indirectly suppress GA metabolism. Moreover, we found OsWRKY78 can interact with and be phosphorylated by mitogen-activated protein kinase (MAPK) kinase OsMAPK6, and this phosphorylation can enhance OsWRKY78 stability and is necessary for its biological function. Taken together, these results not only reveal the critical function of OsWRKY78, but also reveal its mechanism via mediating crosstalk between MAPK and the GA signaling pathway in regulating panicle exsertion.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A simplified SynCom based on core-helper strain interactions enhances symbiotic nitrogen fixation in soybean
Yanjun Li, Ruirui Li, Ran Liu, Junhao Shi, Xiaofan Qiu, Jianfeng Lei, Xu Zhao, Cunhu Wang, Minghai Ge, Huan Xu, Pengyao Miao, Zhongwei Li, Keke Yi, Hong Liao, Yongjia Zhong
J Integr Plant Biol 2025, 67 (6): 1582-1598.  
DOI: 10.1111/jipb.13881
Abstract (Browse 368)  |   Save
Synthetic microbial communities (SynComs) are a promising tool for making full use of the beneficial functions imparted by whole bacterial consortia. However, the complexity of reconstructed SynComs often limits their application in sustainable agriculture. Furthermore, inter-strain interactions are often neglected during SynCom construction. Here, we propose a strategy for constructing a simplified and functional SynCom (sfSynCom) by using elite helper strains that significantly improve the beneficial functions of the core symbiotic strain, here Bradyrhizobium elkanii BXYD3, to sustain the growth of soybean (Glycine max). We first identified helper strains that significantly promote nodulation and nitrogen fixation in soybean mediated by BXYD3. Two of these helper strains assigned to the Pantoea taxon produce acyl homoserine lactones, which significantly enhanced the colonization and infection of soybean by BXYD3. Finally, we constructed a sfSynCom from these core and helper strains. This sfSynCom based on the core-helper strategy was more effective at promoting nodulation than inoculation with BXYD3 alone and achieved effects comparable to those of a complex elite SynCom previously constructed on the basis of potential beneficial functions between microbes and plants alone. Our results suggest that considering interactions between strains as well as those between strains and the host plant might allow construction of sfSynComs.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Molecular breeding of tomato: Advances and challenges
Minmin Du, Chuanlong Sun, Lei Deng, Ming Zhou, Junming Li, Yongchen Du, Zhibiao Ye, Sanwen Huang, Tianlai Li, Jingquan Yu, Chang-Bao Li, Chuanyou Li
J Integr Plant Biol 2025, 67 (3): 669-721.  
doi: 10.1111/jipb.13879
Abstract (Browse 365)  |   Save
The modern cultivated tomato (Solanum lycopersicum) was domesticated from Solanum pimpinellifolium native to the Andes Mountains of South America through a “two-step domestication” process. It was introduced to Europe in the 16th century and later widely cultivated worldwide. Since the late 19th century, breeders, guided by modern genetics, breeding science, and statistical theory, have improved tomatoes into an important fruit and vegetable crop that serves both fresh consumption and processing needs, satisfying diverse consumer demands. Over the past three decades, advancements in modern crop molecular breeding technologies, represented by molecular marker technology, genome sequencing, and genome editing, have significantly transformed tomato breeding paradigms. This article reviews the research progress in the field of tomato molecular breeding, encompassing genome sequencing of germplasm resources, the identification of functional genes for agronomic traits, and the development of key molecular breeding technologies. Based on these advancements, we also discuss the major challenges and perspectives in this field.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Diverse roles of MYB transcription factors in plants
Dawei Zhang, Huapeng Zhou, Yang Zhang, Yuqing Zhao, Yiyi Zhang, Xixian Feng, Honghui Lin
J Integr Plant Biol 2025, 67 (3): 539-562.  
doi: 10.1111/jipb.13869
Abstract (Browse 364)  |   Save
MYB transcription factors (TFs), one of the largest TF families in plants, are involved in various plant-specific processes as the central regulators, such as in phenylpropanoid metabolism, cell cycle, formation of root hair and trichome, phytohormones responses, reproductive growth and abiotic or biotic stress responses. Here we summarized multiple roles and explained the molecular mechanisms of MYB TFs in plant development and stress adaptation. The exploration of MYB TFs contributes to a better comprehension of molecular regulation in plant development and environmental adaptability.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Natural variation in STAYGREEN contributes to low-temperature tolerance in cucumber
Shaoyun Dong, Caixia Li, Haojie Tian, Weiping Wang, Xueyong Yang, Diane M. Beckles, Xiaoping Liu, Jiantao Guan, Xingfang Gu, Jiaqiang Sun, Han Miao and Shengping Zhang
J Integr Plant Biol 2023, 65 (12): 2552-2568.  
DOI: 10.1111/jipb.13571
Abstract (Browse 362)  |   Save
Low-temperature (LT) stress threatens cucumber production globally; however, the molecular mechanisms underlying LT tolerance in cucumber remain largely unknown. Here, using a genome-wide association study (GWAS), we found a naturally occurring single nucleotide polymorphism (SNP) in the STAYGREEN (CsSGR) coding region at the gLTT5.1 locus associated with LT tolerance. Knockout mutants of CsSGR generated by clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 exhibit enhanced LT tolerance, in particularly, increased chlorophyll (Chl) content and reduced reactive oxygen species (ROS) accumulation in response to LT. Moreover, the C-repeat Binding Factor 1 (CsCBF1) transcription factor can directly activate the expression of CsSGR. We demonstrate that the LT-sensitive haplotype CsSGRHapA, but not the LT-tolerant haplotype CsSGRHapG could interact with NON-YELLOW COLORING 1 (CsNYC1) to mediate Chl degradation. Geographic distribution of the CsSGR haplotypes indicated that the CsSGRHapG was selected in cucumber accessions from high latitudes, potentially contributing to LT tolerance during cucumber cold-adaptation in these regions. CsSGR mutants also showed enhanced tolerance to salinity, water deficit, and Pseudoperonospora cubensis, thus CsSGR is an elite target gene for breeding cucumber varieties with broad-spectrum stress tolerance. Collectively, our findings provide new insights into LT tolerance and will ultimately facilitate cucumber molecular breeding.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The dual-action mechanism of Arabidopsis cryptochromes
Gao-Ping Qu, Bochen Jiang and Chentao Lin
J Integr Plant Biol 2024, 66 (5): 883-896.  
doi: 10.1111/jipb.13578
Abstract (Browse 343)  |   Save
Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the “Lock-and-Key” and the “Liquid-Liquid Phase Separation (LLPS)” mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat
Dongzhi Wang, Xiuxiu Zhang, Yuan Cao, Aamana Batool, Yongxin Xu, Yunzhou Qiao, Yongpeng Li, Hao Wang, Xuelei Lin, Xiaomin Bie, Xiansheng Zhang, Ruilian Jing, Baodi Dong, Yiping Tong, Wan Teng, Xigang Liu, Jun Xiao
J Integr Plant Biol 2024, 66 (7): 1295-1312.  
DOI: 10.1111/jipb.13670
Abstract (Browse 338)  |   Save
Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Phase separation of S-RNase promotes self-incompatibility in Petunia hybrida
Huayang Tian, Hongkui Zhang, Huaqiu Huang, Yu'e Zhang and Yongbiao Xue
J Integr Plant Biol 2024, 66 (5): 986-1006.  
doi: 10.1111/jipb.13584
Abstract (Browse 337)  |   Save
Self-incompatibility (SI) is an intraspecific reproductive barrier widely present in angiosperms. The SI system with the broadest occurrence in angiosperms is based on an S-RNase linked to a cluster of multiple S-locus F-box (SLF) genes found in the Solanaceae, Plantaginaceae, Rosaceae, and Rutaceae. Recent studies reveal that non-self S-RNase is degraded by the Skip Cullin F-box (SCF)SLF-mediated ubiquitin–proteasome system in a collaborative manner in Petunia, but how self-RNase functions largely remains mysterious. Here, we show that S-RNases form S-RNase condensates (SRCs) in the self-pollen tube cytoplasm through phase separation and the disruption of SRC formation breaks SI in self-incompatible Petunia hybrida. We further find that the pistil SI factors of a small asparagine-rich protein HT-B and thioredoxin h together with a reduced state of the pollen tube all promote the expansion of SRCs, which then sequester several actin-binding proteins, including the actin polymerization factor PhABRACL, the actin polymerization activity of which is reduced by S-RNase in vitro. Meanwhile, we find that S-RNase variants lacking condensation ability fail to recruit PhABRACL and are unable to induce actin foci formation required for pollen tube growth inhibition. Taken together, our results demonstrate that phase separation of S-RNase promotes SI response in P. hybrida, revealing a new mode of S-RNase action.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
TaWRKY55–TaPLATZ2 module negatively regulate saline–alkali stress tolerance in wheat
Lin Wei, Xinman Ren, Lumin Qin, Rong Zhang, Minghan Cui, Guangmin Xia, Shuwei Liu
J Integr Plant Biol 2025, 67 (1): 19-34.  
DOI: 10.1111/jipb.13793
Abstract (Browse 330)  |   Save
Saline–alkaline soils are a major environmental problem that limit plant growth and crop productivity. Plasma membrane H+-ATPases and the salt overly sensitive (SOS) signaling pathway play important roles in plant responses to saline–alkali stress. However, little is known about the functional genes and mechanisms regulating the transcription of H+-ATPases and SOS pathway genes under saline–alkali stress. In the present study, we identified that the plant AT-rich sequence and zinc-binding (TaPLATZ2) transcription factor are involved in wheat response to saline–alkali stress by directly suppressing the expression of TaHA2/TaSOS3. The knockdown of TaPLATZ2 enhances salt and alkali stress tolerance, while overexpression of TaPLATZ2 leads to salt and alkali stress sensitivity in wheat. In addition, TaWRKY55 directly upregulated the expression of TaPLATZ2 during saline–alkali stress. Through knockdown and overexpression of TaWRKY55 in wheat, TaWRKY55 was shown to negatively modulate salt and alkali stress tolerance. Genetic analyses confirmed that TaPLATZ2 functions downstream of TaWRKY55 in response to salt and alkaline stresses. These findings provide a TaWRKY55–TaPLATZ2–TaHA2/TaSOS3 regulatory module that regulates wheat responses to saline–alkali stress.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Salicylic acid: The roles in plant immunity and crosstalk with other hormones
Hainan Tian, Lu Xu, Xin Li, Yuelin Zhang
J Integr Plant Biol 2025, 67 (3): 773-785.  
doi: 10.1111/jipb.13820
Abstract (Browse 330)  |   Save
Land plants use diverse hormones to coordinate their growth, development and responses against biotic and abiotic stresses. Salicylic acid (SA) is an essential hormone in plant immunity, with its levels and signaling tightly regulated to ensure a balanced immune output. Over the past three decades, molecular genetic analyses performed primarily in Arabidopsis have elucidated the biosynthesis and signal transduction pathways of key plant hormones, including abscisic acid, jasmonic acid, ethylene, auxin, cytokinin, brassinosteroids, and gibberellin. Crosstalk between different hormones has become a major focus in plant biology with the goal of obtaining a full picture of the plant hormone signaling network. This review highlights the roles of SA in plant immunity and summarizes our current understanding of the pairwise interactions of SA with other major plant hormones. The complexity of these interactions is discussed, with the hope of stimulating research to address existing knowledge gaps in hormone crosstalk, particularly in the context of balancing plant growth and defense.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A centromere map based on super pan-genome highlights the structure and function of rice centromeres
Yang Lv, Congcong Liu, Xiaoxia Li, Yueying Wang, Huiying He, Wenchuang He, Wu Chen, Longbo Yang, Xiaofan Dai, Xinglan Cao, Xiaoman Yu, Jiajia Liu, Bin Zhang, Hua Wei, Hong Zhang, Hongge Qian, Chuanlin Shi, Yue Leng, Xiangpei Liu, Mingliang Guo, Xianmeng Wang, Zhipeng Zhang, Tianyi Wang, Bintao Zhang, Qiang Xu, Yan Cui, Qianqian Zhang, Qiaoling Yuan, Noushin Jahan, Jie Ma, Xiaoming Zheng, Yongfeng Zhou, Qian Qian, Longbiao Guo and Lianguang Shang
J Integr Plant Biol 2024, 66 (2): 196-207.  
doi: 10.1111/jipb.13607
Abstract (Browse 321)  |   Save
Rice (Oryza sativa) is a significant crop worldwide with a genome shaped by various evolutionary factors. Rice centromeres are crucial for chromosome segregation, and contain some unreported genes. Due to the diverse and complex centromere region, a comprehensive understanding of rice centromere structure and function at the population level is needed. We constructed a high-quality centromere map based on the rice super pan-genome consisting of a 251-accession panel comprising both cultivated and wild species of Asian and African rice. We showed that rice centromeres have diverse satellite repeat CentO, which vary across chromosomes and subpopulations, reflecting their distinct evolutionary patterns. We also revealed that long terminal repeats (LTRs), especially young Gypsy-type LTRs, are abundant in the peripheral CentO-enriched regions and drive rice centromere expansion and evolution. Furthermore, high-quality genome assembly and complete telomere-to-telomere (T2T) reference genome enable us to obtain more centromeric genome information despite mapping and cloning of centromere genes being challenging. We investigated the association between structural variations and gene expression in the rice centromere. A centromere gene, OsMAB, which positively regulates rice tiller number, was further confirmed by expression quantitative trait loci, haplotype analysis and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 methods. By revealing the new insights into the evolutionary patterns and biological roles of rice centromeres, our finding will facilitate future research on centromere biology and crop improvement.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
An alfalfa MYB-like transcriptional factor MsMYBH positively regulates alfalfa seedling drought resistance and undergoes MsWAV3-mediated degradation
Kun Shi, Jia Liu, Huan Liang, Hongbin Dong, Jinli Zhang, Yuanhong Wei, Le Zhou, Shaopeng Wang, Jiahao Zhu, Mingshu Cao, Chris S. Jones, Dongmei Ma and Zan Wang
J Integr Plant Biol 2024, 66 (4): 683-699.  
doi: 10.1111/jipb.13626
Abstract (Browse 319)  |   Save
Drought is a major threat to alfalfa (Medicago sativa L.) production. The discovery of important alfalfa genes regulating drought response will facilitate breeding for drought-resistant alfalfa cultivars. Here, we report a genome-wide association study of drought resistance in alfalfa. We identified and functionally characterized an MYB-like transcription factor gene (MsMYBH), which increases the drought resistance in alfalfa. Compared with the wild-types, the biomass and forage quality were enhanced in MsMYBH overexpressed plants. Combined RNA-seq, proteomics and chromatin immunoprecipitation analysis showed that MsMYBH can directly bind to the promoters of MsMCP1, MsMCP2, MsPRX1A and MsCARCAB to improve their expression. The outcomes of such interactions include better water balance, high photosynthetic efficiency and scavenge excess H2O2 in response to drought. Furthermore, an E3 ubiquitin ligase (MsWAV3) was found to induce MsMYBH degradation under long-term drought, via the 26S proteasome pathway. Furthermore, variable-number tandem repeats in MsMYBH promoter were characterized among a collection of germplasms, and the variation is associated with promoter activity. Collectively, our findings shed light on the functions of MsMYBH and provide a pivotal gene that could be leveraged for breeding drought-resistant alfalfa. This discovery also offers new insights into the mechanisms of drought resistance in alfalfa.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Big data and artificial intelligence-aided crop breeding: Progress and prospects
Wanchao Zhu, Weifu Li, Hongwei Zhang, Lin Li
J Integr Plant Biol 2025, 67 (3): 722-739.  
doi: 10.1111/jipb.13791
Abstract (Browse 318)  |   Save
The past decade has witnessed rapid developments in gene discovery, biological big data (BBD), artificial intelligence (AI)-aided technologies, and molecular breeding. These advancements are expected to accelerate crop breeding under the pressure of increasing demands for food. Here, we first summarize current breeding methods and discuss the need for new ways to support breeding efforts. Then, we review how to combine BBD and AI technologies for genetic dissection, exploring functional genes, predicting regulatory elements and functional domains, and phenotypic prediction. Finally, we propose the concept of intelligent precision design breeding (IPDB) driven by AI technology and offer ideas about how to implement IPDB. We hope that IPDB will enhance the predictability, efficiency, and cost of crop breeding compared with current technologies. As an example of IPDB, we explore the possibilities offered by CropGPT, which combines biological techniques, bioinformatics, and breeding art from breeders, and presents an open, shareable, and cooperative breeding system. IPDB provides integrated services and communication platforms for biologists, bioinformatics experts, germplasm resource specialists, breeders, dealers, and farmers, and should be well suited for future breeding.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A highly efficient soybean transformation system using GRF3-GIF1 chimeric protein
Ying Zhao, Peng Cheng, Ying Liu, Chunyan Liu, Zhenbang Hu, Dawei Xin, Xiaoxia Wu, Mingliang Yang, Qingshan Chen
J Integr Plant Biol 2025, 67 (1): 3-6.  
doi: 10.1111/jipb.13767
Abstract (Browse 313)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The AMS/DYT1–MYB module interacts with the MED25–MYC–MYB complexes to inhibit jasmonate-regulated floral defense in Arabidopsis
Junqiao Song, Shihai Pang, Bingjie Xue, Deqing Rong, Tiancong Qi, Huang Huang, Susheng Song
J Integr Plant Biol 2025, 67 (2): 408-422.  
DOI: 10.1111/jipb.13818
Abstract (Browse 310)  |   Save
The phytohormone jasmonates (JAs) regulate plant growth and defense responses. The reproductive organs of flowers are devastated by insect herbivores. However, the molecular mechanisms of floral defense remain largely unknown. Here, we found that the Arabidopsis JA receptor CORONATINE INSENSITIVE1 (COI1) and its substrates JA ZIM-domain (JAZ) repressors, and the mediator subunit MEDIATOR25-based MED25–MYC–MYB (MMM) complexes, including MYC2/3/4/5 and MYB28/29/76, mediated floral defense against the insects Helicoverpa armigera, Spodoptera exigua, and Spodoptera frugiperda. The flower-specific IIIa bHLH factors ABORTED MICROSPORES (AMS) and DYSFUNCTIONAL TAPETUM 1 (DYT1) were JAZ-interaction proteins. They interacted with members of the MMM complexes, inhibited the transcriptional activity of MYC2 and MYB28, and repressed floral defense against insects. AMS and DYT1 recruited the flower-specific MYB21/24, and these MYBs interacted with members of MMM complexes, inhibited the MYC2–MYB28 function, and suppressed floral defense against insects. Our study revealed that the JA–COI1–JAZ–MMM pathway mediated flower defense, and the AMS/DYT1–MYB21/24 module antagonized the MMM complexes to repress floral defense against insects.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The MYB61–STRONG2 module regulates culm diameter and lodging resistance in rice
Yong Zhao, Xianpeng Wang, Jie Gao, Muhammad Abdul Rehman Rashid, Hui Wu, Qianfeng Hu, Xingming Sun, Jinjie Li, Hongliang Zhang, Peng Xu, Qian Qian, Chao Chen, Zichao Li, Zhanying Zhang
J Integr Plant Biol 2025, 67 (2): 243-257.  
DOI: 10.1111/jipb.13830
Abstract (Browse 310)  |   Save
Lodging reduces grain yield and quality in cereal crops. Lodging resistance is affected by the strength of the culm, which is influenced by the culm diameter, culm wall thickness, and cell wall composition. To explore the genetic architecture of culm diameter in rice (Oryza sativa), we conducted a genome-wide association study (GWAS). We identified STRONG CULM 2 (STRONG2), which encodes the mannan synthase CSLA5, and showed that plants that overexpressed this gene had increased culm diameter and improved lodging resistance. STRONG2 appears to increase the levels of cell wall components, such as mannose and cellulose, thereby enhancing sclerenchyma development in stems. SNP14931253 in the STRONG2 promoter contributes to variation in STRONG2 expression in natural germplasms and the transcription factor MYB61 directly activates STRONG2 expression. Furthermore, STRONG2 overexpressing plants produced significantly more grains per panicle and heavier grains than the wild-type plants. These results demonstrate that the MYB61–STRONG2 module positively regulates culm diameter and lodging resistance, information that could guide breeding efforts for improved yield in rice.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Plant virology in the 21st century in China: Recent advances and future directions
Jianguo Wu, Yongliang Zhang, Fangfang Li, Xiaoming Zhang, Jian Ye, Taiyun Wei, Zhenghe Li, Xiaorong Tao, Feng Cui, Xianbing Wang, Lili Zhang, Fei Yan, Shifang Li, Yule Liu, Dawei Li, Xueping Zhou and Yi Li
J Integr Plant Biol 2024, 66 (3): 579-622.  
doi: 10.1111/jipb.13580
Abstract (Browse 309)  |   Save
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
TaCHP encoding C1-domain protein stably enhances wheat yield in saline-alkaline fields
Guilian Xiao, Minqin Wang, Xiaomeng Li, Zhengning Jiang, Hongjian Zhang, Derong Gao, Boqiao Zhang, Guangmin Xia and Mengcheng Wang
J Integr Plant Biol 2024, 66 (2): 169-171.  
doi: 10.1111/jipb.13605
Abstract (Browse 308)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
D53 represses rice blast resistance by directly targeting phenylalanine ammonia lyases
Haitao Ye, Qingqing Hou, Haitao Lv, Hui Shi, Duo Wang, Yujie Chen, Tangshuai Xu, Mei Wang, Min He, Junjie Yin, Xiang Lu, Yongyan Tang, Xiaobo Zhu, Lijuan Zou, Xuewei Chen, Jiayang Li, Bing Wang and Jing Wang
J Integr Plant Biol 2024, 66 (9): 1827-1830.  
DOI: 10.1111/jipb.13734
Abstract (Browse 307)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The miR159a-DUO1 module regulates pollen development by modulating auxin biosynthesis and starch metabolism in citrus
Yanhui Xu, Wenxiu Tian, Minqiang Yin, Zhenmei Cai, Li Zhang, Deyi Yuan, Hualin Yi, Juxun Wu
J Integr Plant Biol 2024, 66 (7): 1351-1369.  
DOI: 10.1111/jipb.13656
Abstract (Browse 305)  |   Save
Achieving seedlessness in citrus varieties is one of the important objectives of citrus breeding. Male sterility associated with abnormal pollen development is an important factor in seedlessness. However, our understanding of the regulatory mechanism underlying the seedlessness phenotype in citrus is still limited. Here, we determined that the miR159a-DUO1 module played an important role in regulating pollen development in citrus, which further indirectly modulated seed development and fruit size. Both the overexpression of csi-miR159a and the knocking out of DUO1 in Hong Kong kumquat (Fortunella hindsii) resulted in small and seedless fruit phenotypes. Moreover, pollen was severely aborted in both transgenic lines, with arrested pollen mitotic I and abnormal pollen starch metabolism. Through additional cross-pollination experiments, DUO1 was proven to be the key target gene for miR159a to regulate male sterility in citrus. Based on DNA affinity purification sequencing (DAP-seq), RNA-seq, and verified interaction assays, YUC2/YUC6, SS4 and STP8 were identified as downstream target genes of DUO1, those were all positively regulated by DUO1. In transgenic F. hindsii lines, the miR159a-DUO1 module down-regulated the expression of YUC2/ YUC6, which decreased indoleacetic acid (IAA) levels and modulated auxin signaling to repress pollen mitotic I. The miR159a-DUO1 module reduced the expression of the starch synthesis gene SS4 and sugar transport gene STP8 to disrupt starch metabolism in pollen. Overall, this work reveals a new mechanism by which the miR159a- DUO1 module regulates pollen development and elucidates the molecular regulatory network underlying male sterility in citrus.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
In vivo haploid induction in cauliflower, kale, and broccoli
Guixiang Wang, Mei Zong, Shuo Han, Hong Zhao, Mengmeng Duan, Xin Liu, Ning Guo, Fan Liu
J Integr Plant Biol 2024, 66 (9): 1823-1826.  
doi: 10.1111/jipb.13730
Abstract (Browse 302)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Identification of new salicylic acid signaling regulators for root development and microbiota composition in plants
Xianqing Jia, Zhuang Xu, Lei Xu, Juan P. Frene, Mathieu Gonin, Long Wang, Jiahong Yu, Gabriel Castrillo, Keke Yi
J Integr Plant Biol 2025, 67 (2): 345-354.  
DOI: 10.1111/jipb.13814
Abstract (Browse 301)  |   Save
Besides playing a crucial role in plant immunity via the nonexpressor of pathogenesis-related (NPR) proteins, increasing evidence shows that salicylic acid (SA) can also regulate plant root growth. However, the transcriptional regulatory network controlling this SA response in plant roots is still unclear. Here, we found that NPR1 and WRKY45, the central regulators of SA response in rice leaves, control only a reduced sector of the root SA signaling network. We demonstrated that SA attenuates root growth via a novel NPR1/WRKY45-independent pathway. Furthermore, using regulatory network analysis and mutant characterization, we identified a set of new NPR1/WRKY45-independent regulators that conservedly modulate the root development and root-associated microbiota composition in both Oryza sativa (monocot) and Arabidopsis thaliana (dicot) in response to SA. Our results established the SA signaling as a central element regulating plant root functions under ecologically relevant conditions. These results provide new insights to understand how regulatory networks control plant responses to abiotic and biotic stresses.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases
Heng Yang, Yi Zhang, Shanwu Lyu, Yaping Mao, Fangqin Yu, Sai Liu, Yujie Fang, Shulin Deng
J Integr Plant Biol 2025, 67 (5): 1274-1289.  
DOI: 10.1111/jipb.13845
Abstract (Browse 298)  |   Save
Reactive oxygen species (ROS) plays critical roles in modulating plant growth and stress response and its homeostasis is fine tuned using multiple peroxidases. H2O2, a major kind of ROS, is removed rapidly and directly using three catalases, CAT1, CAT2, and CAT3, in Arabidopsis. Although the activity regulations of catalases have been well studied, their degradation pathway is less clear. Here, we report that CAT2 and CAT3 protein abundance was partially controlled using the 26S proteasome. To further identify candidate proteins that modulate the stability of CAT2, we performed yeast-two-hybrid screening and recovered several clones encoding a protein with RING and vWA domains, CIRP1 (CAT2 Interacting RING Protein 1). Drought and oxidative stress downregulated CIRP1 transcripts. CIRP1 harbored E3 ubiquitination activity and accelerated the degradation of CAT2 and CAT3 by direct interaction and ubiquitination. The cirp1 mutants exhibited stronger drought and oxidative stress tolerance, which was opposite to the cat2 and cat3 mutants. Genetic analysis revealed that CIRP1 acts upstream of CAT2 and CAT3 to negatively regulate drought and oxidative stress tolerance. The increased drought and oxidative stress tolerance of the cirp1 mutants was due to enhanced catalase (CAT) activities and alleviated ROS levels. Our data revealed that the CIRP1–CAT2/CAT3 module plays a vital role in alleviating ROS levels and balancing growth and stress responses in Arabidopsis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Temporal control of the Aux/IAA genes BnIAA32 and BnIAA34 mediates Brassica napus dual shade responses
Yafei Li, Yiyi Guo, Yue Cao, Pengguo Xia, Dongqing Xu, Ning Sun, Lixi Jiang and Jie Dong
J Integr Plant Biol 2024, 66 (5): 928-962.  
doi: 10.1111/jipb.13582
Abstract (Browse 294)  |   Save
Precise responses to changes in light quality are crucial for plant growth and development. For example, hypocotyls of shade-avoiding plants typically elongate under shade conditions. Although this typical shade-avoidance response (TSR) has been studied in Arabidopsis (Arabidopsis thaliana), the molecular mechanisms underlying shade tolerance are poorly understood. Here we report that B. napus (Brassica napus) seedlings exhibit dual shade responses. In addition to the TSR, B. napus seedlings also display an atypical shade response (ASR), with shorter hypocotyls upon perception of early-shade cues. Genome-wide selective sweep analysis indicated that ASR is associated with light and auxin signaling. Moreover, genetic studies demonstrated that phytochrome A (BnphyA) promotes ASR, whereas BnphyB inhibits it. During ASR, YUCCA8 expression is activated by early-shade cues, leading to increased auxin biosynthesis. This inhibits hypocotyl elongation, as young B. napus seedlings are highly sensitive to auxin. Notably, two non-canonical AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressor genes, BnIAA32 and BnIAA34, are expressed during this early stage. BnIAA32 and BnIAA34 inhibit hypocotyl elongation under shade conditions, and mutations in BnIAA32 and BnIAA34 suppress ASR. Collectively, our study demonstrates that the temporal expression of BnIAA32 and BnIAA34 determines the behavior of B. napus seedlings following shade-induced auxin biosynthesis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A signaling cascade mediating fruit trait development via phosphorylation-modulated nuclear accumulation of JAZ repressor
Wei Wang, Jinyao Ouyang, Yating Li, Changsheng Zhai, Bing He, Huahan Si, Kunsong Chen, Jocelyn K. C. Rose and Wensuo Jia
J Integr Plant Biol 2024, 66 (6): 1106-1125.  
doi: 10.1111/jipb.13654
Abstract (Browse 291)  |   Save
It is generally accepted that jasmonate-ZIM domain (JAZ) repressors act to mediate jasmonate (JA) signaling via CORONATINE-INSENSITIVE1 (COI1)-mediated degradation. Here, we report a cryptic signaling cascade where a JAZ repressor, FvJAZ12, mediates multiple signaling inputs via phosphorylation-modulated subcellular translocation rather than the COI1-mediated degradation mechanism in strawberry (Fragaria vesca). FvJAZ12 acts to regulate flavor metabolism and defense response, and was found to be the target of FvMPK6, a mitogen-activated protein kinase that is capable of responding to multiple signal stimuli. FvMPK6 phosphorylates FvJAZ12 at the amino acid residues S179 and T183 adjacent to the PY residues, thereby attenuating its nuclear accumulation and relieving its repression for FvMYC2, which acts to control the expression of lipoxygenase 3 (FvLOX3), an important gene involved in JA biosynthesis and a diverse array of cellular metabolisms. Our data reveal a previously unreported mechanism for JA signaling and decipher a signaling cascade that links multiple signaling inputs with fruit trait development.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Diploid species phylogeny and evolutionary reticulation indicate early radiation of Ephedra in the Tethys coast
Qiong Yu, Fu-Sheng Yang, Ya-Xing Chen, Hui Wu, Stefanie M. Ickert-Bond and Xiao-Quan Wang
J Integr Plant Biol 2023, 65 (12): 2619-2630.  
DOI: 10.1111/jipb.13573
Abstract (Browse 289)  |   Save
Reconstructing a robust species phylogeny and disentangling the evolutionary and biogeographic history of the gymnosperm genus Ephedra, which has a large genome and rich polyploids, remain a big challenge. Here we reconstructed a transcriptome-based phylogeny of 19 diploid Ephedra species, and explored evolutionary reticulations in this genus represented by 50 diploid and polyploid species, using four low-copy nuclear and nine plastid genes. The diploid species phylogeny indicates that the Mediterranean species diverged first, and the remaining species split into three clades, including the American species (Clade A), E. rhytidosperma, and all other Asian species (Clade B). The single-gene trees placed E. rhytidosperma sister to Clade A, Clade B, or Clades A + B in similar proportions, suggesting that radiation and gene flow likely occurred in the early evolution of Ephedra. In addition, reticulate evolution occurred not only among the deep nodes, but also in the recently evolved South American species, which further caused difficulty in phylogenetic reconstruction. Moreover, we found that allopolyploid speciation was pervasive in Ephedra. Our study also suggests that Ephedra very likely originated in the Tethys coast during the late Cretaceous, and the South American Ephedra species have a single origin by dispersal from Mexico or North America.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
SlBEL11 regulates flavonoid biosynthesis, thus fine-tuning auxin efflux to prevent premature fruit drop in tomato
Xiufen Dong, Xianfeng Liu, Lina Cheng, Ruizhen Li, Siqi Ge, Sai Wang, Yue Cai, Yang Liu, Sida Meng, Cai-Zhong Jiang, Chun-Lin Shi, Tianlai Li, Daqi Fu, Mingfang Qi and Tao Xu
J Integr Plant Biol 2024, 66 (4): 749-770.  
doi: 10.1111/jipb.13627
Abstract (Browse 289)  |   Save
Auxin regulates flower and fruit abscission, but how developmental signals mediate auxin transport in abscission remains unclear. Here, we reveal the role of the transcription factor BEL1-LIKE HOMEODOMAIN11 (SlBEL11) in regulating auxin transport during abscission in tomato (Solanum lycopersicum). SlBEL11 is highly expressed in the fruit abscission zone, and its expression increases during fruit development. Knockdown of SlBEL11 expression by RNA interference (RNAi) caused premature fruit drop at the breaker (Br) and 3d post-breaker (Br+3) stages of fruit development. Transcriptome and metabolome analysis of SlBEL11-RNAi lines revealed impaired flavonoid biosynthesis and decreased levels of most flavonoids, especially quercetin, which functions as an auxin transport inhibitor. This suggested that SlBEL11 prevents premature fruit abscission by modulating auxin efflux from fruits, which is crucial for the formation of an auxin response gradient. Indeed, quercetin treatment suppressed premature fruit drop in SlBEL11-RNAi plants. DNA affinity purification sequencing (DAP-seq) analysis indicated that SlBEL11 induced expression of the transcription factor gene SlMYB111 by directly binding to its promoter. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay showed that S. lycopersicum MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG111 (SlMYB111) induces the expression of the core flavonoid biosynthesis genes SlCHS1, SlCHI, SlF3H, and SlFLS by directly binding to their promoters. Our findings suggest that the SlBEL11-SlMYB111 module modulates flavonoid biosynthesis to fine-tune auxin efflux from fruits and thus maintain an auxin response gradient in the pedicel, thereby preventing premature fruit drop.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
An integrative framework reveals widespread gene flow during the early radiation of oaks and relatives in Quercoideae (Fagaceae)
Shui-Yin Liu, Ying-Ying Yang, Qin Tian, Zhi-Yun Yang, Shu-Feng Li, Paul J. Valdes, Alex Farnsworth, Heather R. Kates, Carolina M. Siniscalchi, Robert P. Guralnick, Douglas E. Soltis, Pamela S. Soltis, Gregory W. Stull, Ryan A. Folk, Ting-Shuang Yi
J Integr Plant Biol 2025, 67 (4): 1119-1141.  
doi: 10.1111/jipb.13773
Abstract (Browse 289)  |   Save
Although the frequency of ancient hybridization across the Tree of Life is greater than previously thought, little work has been devoted to uncovering the extent, timeline, and geographic and ecological context of ancient hybridization. Using an expansive new dataset of nuclear and chloroplast DNA sequences, we conducted a multifaceted phylogenomic investigation to identify ancient reticulation in the early evolution of oaks (Quercus). We document extensive nuclear gene tree and cytonuclear discordance among major lineages of Quercus and relatives in Quercoideae. Our analyses recovered clear signatures of gene flow against a backdrop of rampant incomplete lineage sorting, with gene flow most prevalent among major lineages of Quercus and relatives in Quercoideae during their initial radiation, dated to the Early-Middle Eocene. Ancestral reconstructions including fossils suggest ancestors of Castanea + Castanopsis, Lithocarpus, and the Old World oak clade probably co-occurred in North America and Eurasia, while the ancestors of Chrysolepis, Notholithocarpus, and the New World oak clade co-occurred in North America, offering ample opportunity for hybridization in each region. Our study shows that hybridization—perhaps in the form of ancient syngameons like those seen today—has been a common and important process throughout the evolutionary history of oaks and their relatives. Concomitantly, this study provides a methodological framework for detecting ancient hybridization in other groups.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
How plants sense and respond to osmotic stress
Bo Yu, Dai‐Yin Chao and Yang Zhao
J Integr Plant Biol 2024, 66 (3): 394-423.  
doi: 10.1111/jipb.13622
Abstract (Browse 288)  |   Save
Drought is one of the most serious abiotic stresses to land plants. Plants sense and respond to drought stress to survive under water deficiency. Scientists have studied how plants sense drought stress, or osmotic stress caused by drought, ever since Charles Darwin, and gradually obtained clues about osmotic stress sensing and signaling in plants. Osmotic stress is a physical stimulus that triggers many physiological changes at the cellular level, including changes in turgor, cell wall stiffness and integrity, membrane tension, and cell fluid volume, and plants may sense some of these stimuli and trigger downstream responses. In this review, we emphasized water potential and movements in organisms, compared putative signal inputs in cell wall-containing and cell wall-free organisms, prospected how plants sense changes in turgor, membrane tension, and cell fluid volume under osmotic stress according to advances in plants, animals, yeasts, and bacteria, summarized multilevel biochemical and physiological signal outputs, such as plasma membrane nanodomain formation, membrane water permeability, root hydrotropism, root halotropism, Casparian strip and suberin lamellae, and finally proposed a hypothesis that osmotic stress responses are likely to be a cocktail of signaling mediated by multiple osmosensors. We also discussed the core scientific questions, provided perspective about the future directions in this field, and highlighted the importance of robust and smart root systems and efficient source-sink allocations for generating future high-yield stress-resistant crops and plants.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Enhancing maize's nitrogen-fixing potential through ZmSBT3, a gene suppressing mucilage secretion
Jingyang Gao, Peijiang Feng, Jingli Zhang, Chaopei Dong, Zhao Wang, Mingxiang Chen, Zhongliang Yu, Bowen Zhao, Xin Hou, Huijuan Wang, Zhaokun Wu, Razia Sultana Jemim, Haidong Yu, Doudou Sun, Pei Jing, Jiafa Chen, Weibin Song, Xuecai Zhang, Zijian Zhou and Jianyu Wu,
J Integr Plant Biol 2023, 65 (12): 2645-2659.  
doi: 10.1111/jipb.13581
Abstract (Browse 287)  |   Save
Maize (Zea mays) requires substantial amounts of nitrogen, posing a challenge for its cultivation. Recent work discovered that some ancient Mexican maize landraces harbored diazotrophic bacteria in mucilage secreted by their aerial roots. To see if this trait is retained in modern maize, we conducted a field study of aerial root mucilage (ARM) in 258 inbred lines. We observed that ARM secretion is common in modern maize, but the amount significantly varies, and only a few lines have retained the nitrogen-fixing traits found in ancient landraces. The mucilage of the high-ARM inbred line HN5-724 had high nitrogen-fixing enzyme activity and abundant diazotrophic bacteria. Our genome-wide association study identified 17 candidate genes associated with ARM across three environments. Knockouts of one candidate gene, the subtilase family gene ZmSBT3, confirmed that it negatively regulates ARM secretion. Notably, the ZmSBT3 knockout lines had increased biomass and total nitrogen accumulation under nitrogen-free culture conditions. High ARM was associated with three ZmSBT3 haplotypes that were gradually lost during maize domestication, being retained in only a few modern inbred lines such as HN5-724. In summary, our results identify ZmSBT3 as a potential tool for enhancing ARM, and thus nitrogen fixation, in maize.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Knockout of miR396 genes increases seed size and yield in soybean
Hongtao Xie, Fei Su, Qingfeng Niu, Leping Geng, Xuesong Cao, Minglei Song, Jinsong Dong, Zai Zheng, Rui Guo, Yang Zhang, Yuanwei Deng, Zhanbo Ji, Kang Pang, Jian-Kang Zhu and Jianhua Zhu
J Integr Plant Biol 2024, 66 (6): 1148-1157.  
doi: 10.1111/jipb.13660
Abstract (Browse 284)  |   Save
Yield improvement has long been an important task for soybean breeding in the world in order to meet the increasing demand for food and animal feed. miR396 genes have been shown to negatively regulate grain size in rice, but whether miR396 family members may function in a similar manner in soybean is unknown. Here, we generated eight soybean mutants harboring different combinations of homozygous mutations in the six soybean miR396 genes through genome editing with clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) 12SF01 in the elite soybean cultivar Zhonghuang 302 (ZH302). Four triple mutants (mir396aci, mir396acd, mir396adf, and mir396cdf), two quadruple mutants (mir396-abcd and mir396acfi), and two quintuple mutants (mir396abcdf and mir396bcdfi) were characterized. We found that plants of all the mir396 mutants produced larger seeds compared to ZH302 plants. Field tests showed that mir396adf and mir396cdf plants have significantly increased yield in growth zones with relatively high latitude which are suited for ZH302 and moderately increased yield in lower latitude. In contrast, mir396abcdf and mir396bcdfi plants have increased plant height and decreased yield in growth zones with relatively high latitude due to lodging issues, but they are suited for low latitude growth zones with increased yield without lodging problems. Taken together, our study demonstrated that loss-of-function of miR396 genes leads to significantly enlarged seed size and increased yield in soybean, providing valuable germplasms for breeding high-yield soybean.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
PROMOTIONS
Scan the QR code to view JIPB on WeChat
Follow us at @JIPBio on Twitter

PUBLISHED BY

ACKNOWLEDGEMENTS

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22