Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
  
TaTIP41 and TaTAP46 positively regulate drought tolerance in wheat by inhibiting PP2A activity
Jianhui Ma, Yuke Geng, Hong Liu, Mengqi Zhang, Shujuan Liu, Chenyang Hao, Jian Hou, Youfu Zhang, Daijing Zhang, Weijun Zhang, Xueyong Zhang and Tian Li
J Integr Plant Biol 2023, 65 (9): 2056-2070.  
DOI: 10.1111/jipb.13542
Abstract (Browse 854)  |   Save
Drought is a major environmental stress limiting global wheat (Triticum aestivum) production. Exploring drought tolerance genes is important for improving drought adaptation in this crop. Here, we cloned and characterized TaTIP41, a novel drought tolerance gene in wheat. TaTIP41 is a putative conserved component of target of rapamycin (TOR) signaling, and the TaTIP41 homoeologs were expressed in response to drought stress and abscisic acid (ABA). The overexpression of TaTIP41 enhanced drought tolerance and the ABA response, including ABA-induced stomatal closure, while its downregulation using RNA interference (RNAi) had the opposite effect. Furthermore, TaTIP41 physically interacted with TaTAP46, another conserved component of TOR signaling. Like TaTIP41, TaTAP46 positively regulated drought tolerance. Furthermore, TaTIP41 and TaTAP46 interacted with type-2A protein phosphatase (PP2A) catalytic subunits, such as TaPP2A-2, and inhibited their enzymatic activities. Silencing TaPP2A-2 improved drought tolerance in wheat. Together, our findings provide new insights into the roles of TaTIP41 and TaTAP46 in the drought tolerance and ABA response in wheat, and their potential application in improving wheat environmental adaptability.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
Cas9-targeted Nanopore sequencing rapidly elucidates the transposition preferences and DNA methylation profiles of mobile elements in plants
Pavel Merkulov, Sofya Gvaramiya, Maxim Dudnikov, Roman Komakhin, Murad Omarov, Alina Kocheshkova, Zakhar Konstantinov, Alexander Soloviev, Gennady Karlov, Mikhail Divashuk and Ilya Kirov
J Integr Plant Biol 2023, 65 (10): 2242-2261.  
DOI: 10.1111/jipb.13555
Abstract (Browse 571)  |   Save
Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9-targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ (EVD) retrotransposon in wild-type Arabidopsis thaliana and rapidly obtained up to 40×sequence coverage. Analysis of hemizygous T-DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 (decrease in DNA methylation 1) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs. Finally, we detected hypomethylation of novel somatic insertions for two ONSENs. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T-DNA insertion mutants and transgenic plants.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Simple method for transformation and gene editing in medicinal plants
Xuesong Cao, Hongtao Xie, Minglei Song, Lianghui Zhao, Hailiang Liu, Guofu Li and Jian‐Kang Zhu
J Integr Plant Biol 2024, 66 (1): 17-19.  
doi: 10.1111/jipb.13593
Abstract (Browse 550)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The basic helix-loop-helix transcription factor gene, OsbHLH38, plays a key role in controlling rice salt tolerance
Fengping Du, Yinxiao Wang, Juan Wang, Yingbo Li, Yue Zhang, Xiuqin Zhao, Jianlong Xu, Zhikang Li, Tianyong Zhao, Wensheng Wang and Binying Fu
J Integr Plant Biol 2023, 65 (8): 1859-1873.  
doi: 10.1111/jipb.13489
Abstract (Browse 544)  |   Save
The plant hormone abscisic acid (ABA) is crucial for plant seed germination and abiotic stress tolerance. However, the association between ABA sensitivity and plant abiotic stress tolerance remains largely unknown. In this study, 436 rice accessions were assessed for their sensitivity to ABA during seed germination. The considerable diversity in ABA sensitivity among rice germplasm accessions was primarily reflected by the differentiation between the Xian (indica) and Geng (japonica) subspecies and between the upland-Geng and lowland-Geng ecotypes. The upland-Geng accessions were most sensitive to ABA. Genome-wide association analyses identified four major quantitative trait loci containing 21 candidate genes associated with ABA sensitivity of which a basic helix-loop-helix transcription factor gene, OsbHLH38, was the most important for ABA sensitivity. Comprehensive functional analyses using knockout and overexpression transgenic lines revealed that OsbHLH38 expression was responsive to multiple abiotic stresses. Overexpression of OsbHLH38 increased seedling salt tolerance, while knockout of OsbHLH38 increased sensitivity to salt stress. A salt-responsive transcription factor, OsDREB2A, interacted with OsbHLH38 and was directly regulated by OsbHLH38. Moreover, OsbHLH38 affected rice abiotic stress tolerance by mediating the expression of a large set of transporter genes of phytohormones, transcription factor genes, and many downstream genes with diverse functions, including photosynthesis, redox homeostasis, and abiotic stress responsiveness. These results demonstrated that OsbHLH38 is a key regulator in plant abiotic stress tolerance.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(2)
  
The SlWRKY57-SlVQ21/SlVQ16 module regulates salt stress in tomato
Jilin Ma, Chonghua Li, Lulu Sun, Xuechun Ma, Hui Qiao, Wenchao Zhao, Rui Yang, Susheng Song, Shaohui Wang and Huang Huang
J Integr Plant Biol 2023, 65 (11): 2437-2455.  
DOI: 10.1111/jipb.13562
Abstract (Browse 530)  |   Save
Salt stress is a major abiotic stress which severely hinders crop production. However, the regulatory network controlling tomato resistance to salt remains unclear. Here, we found that the tomato WRKY transcription factor WRKY57 acted as a negative regulator in salt stress response by directly attenuating the transcription of salt-responsive genes (SlRD29B and SlDREB2) and an ion homeostasis gene (SlSOS1). We further identified two VQ-motif containing proteins SlVQ16 and SlVQ21 as SlWRKY57-interacting proteins. SlVQ16 positively, while SlVQ21 negatively modulated tomato resistance to salt stress. SlVQ16 and SlVQ21 competitively interacted with SlWRKY57 and antagonistically regulated the transcriptional repression activity of SlWRKY57. Additionally, the SlWRKY57-SlVQ21/SlVQ16 module was involved in the pathway of phytohormone jasmonates (JAs) by interacting with JA repressors JA-ZIM domain (JAZ) proteins. These results provide new insights into how the SlWRKY57-SlVQ21/SlVQ16 module finely tunes tomato salt tolerance.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The F-box protein SHORT PRIMARY ROOT modulates primary root meristem activity by targeting SEUSS-LIKE protein for degradation in rice
Nini Ma, Nian Li, Zhongmao Yu, Chunli Chen, Dao‐Xiu Zhou and Yu Zhao
J Integr Plant Biol 2023, 65 (8): 1937-1949.  
DOI: 10.1111/jipb.13492
Abstract (Browse 504)  |   Save
Root meristem activity is essential for root morphogenesis and adaptation, but the molecular mechanism regulating root meristem activity is not fully understood. Here, we identify an F-box family E3 ubiquitin ligase named SHORT PRIMARY ROOT (SHPR) that regulates primary root (PR) meristem activity and cell proliferation in rice. SHPR loss-of-function mutations impair PR elongation in rice. SHPR is involved in the formation of an SCF complex with the Oryza sativa SKP1-like protein OSK1/20. We show that SHPR interacts with Oryza sativa SEUSS-LIKE (OsSLK) in the nucleus and is required for OsSLK polyubiquitination and degradation by the ubiquitin 26S-proteasome system (UPS). Transgenic plants overexpressing OsSLK display a shorter PR phenotype, which is similar to the SHPR loss-of-function mutants. Genetic analysis suggests that SHPR promotes PR elongation in an OsSLK-dependent manner. Collectively, our study establishes SHPR as an E3 ubiquitin ligase that targets OsSLK for degradation, and uncovers a protein ubiquitination pathway as a mechanism for modulating root meristem activity in rice.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
GmJAZ3 interacts with GmRR18a and GmMYC2a to regulate seed traits in soybean
Yang Hu, Yue Liu, Jian‐Jun Tao, Long Lu, Zhi‐Hao Jiang, Jun‐Jie Wei, Chun‐Mei Wu, Cui‐Cui Yin, Wei Li, Ying‐Dong Bi, Yong‐Cai Lai, Wei Wei, Wan‐Ke Zhang, Shou‐Yi Chen and Jin‐Song Zhang
J Integr Plant Biol 2023, 65 (8): 1983-2000.  
doi: 10.1111/jipb.13494
Abstract (Browse 468)  |   Save
Seed weight is usually associated with seed size and is one of the important agronomic traits that determine yield. Understanding of seed weight control is limited, especially in soybean plants. Here we show that Glycine max JASMONATE-ZIM DOMAIN 3 (GmJAZ3), a gene identified through gene co-expression network analysis, regulates seed-related traits in soybean. Overexpression of GmJAZ3 promotes seed size/weight and other organ sizes in stable transgenic soybean plants likely by increasing cell proliferation. GmJAZ3 interacted with both G. max RESPONSE REGULATOR 18a (GmRR18a) and GmMYC2a to inhibit their transcriptional activation of cytokinin oxidase gene G. max CYTOKININ OXIDASE 3-4 (GmCKX3-4), which usually affects seed traits. Meanwhile, the GmRR18a binds to the promoter of GmMYC2a and activates GmMYC2a gene expression. In GmJAZ3-overexpressing soybean seeds, the protein contents were increased while the fatty acid contents were reduced compared to those in the control seeds, indicating that the GmJAZ3 affects seed size/weight and compositions. Natural variation in JAZ3 promoter region was further analyzed and Hap3 promoter correlates with higher promoter activity, higher gene expression and higher seed weight. The Hap3 promoter may be selected and fixed during soybean domestication. JAZ3 orthologs from other plants/crops may also control seed size and weight. Taken together, our study reveals a novel molecular module GmJAZ3-GmRR18a/GmMYC2a-GmCKXs for seed size and weight control, providing promising targets during soybean molecular breeding for better seed traits.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(3)
  
Artificial evolution of OsEPSPS through an improved dual cytosine and adenine base editor generated a novel allele conferring rice glyphosate tolerance
Chen Zhang, Xue Zhong, Shaoya Li, Lei Yan, Jingying Li, Yubing He, Yong Lin, Yangjun Zhang and Lanqin Xia
J Integr Plant Biol 2023, 65 (9): 2194-2203.  
doi: 10.1111/jipb.13543
Abstract (Browse 450)  |   Save
Exploiting novel endogenous glyphosate-tolerant alleles is highly desirable and has promising potential for weed control in rice breeding. Here, through fusions of different effective cytosine and adenine deaminases with nCas9-NG, we engineered an effective surrogate two-component composite base editing system, STCBE-2, with improved C-to-T and A-to-G base editing efficiency and expanded the editing window. Furthermore, we targeted a rice endogenous OsEPSPS gene for artificial evolution through STCBE-2-mediated near-saturated mutagenesis. After hygromycin and glyphosate selection, we identified a novel OsEPSPS allele with an Asp-213-Asn (D213N) mutation (OsEPSPS-D213N) in the predicted glyphosate-binding domain, which conferred rice plants reliable glyphosate tolerance and had not been reported or applied in rice breeding. Collectively, we developed a novel dual base editor which will be valuable for artificial evolution of important genes in crops. And the novel glyphosate-tolerant rice germplasm generated in this study will benefit weeds management in rice paddy fields.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Striking a growth–defense balance: Stress regulators that function in maize development
Shiyi Xie, Hongbing Luo, Wei Huang, Weiwei Jin and Zhaobin Dong
J Integr Plant Biol 2024, 66 (3): 424-442.  
doi: 10.1111/jipb.13570
Abstract (Browse 445)  |   Save
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
NIGT1 represses plant growth and mitigates phosphate starvation signaling to balance the growth response tradeoff in rice
Yuxin Zhang, Qianqian Zhang, Meina Guo, Xueqing Wang, Tianjie Li, Qingyu Wu, Lihui Li, Keke Yi and Wenyuan Ruan
J Integr Plant Biol 2023, 65 (8): 1874-1889.  
doi: 10.1111/jipb.13496
Abstract (Browse 426)  |   Save
Inorganic phosphate (Pi) availability is an important factor which affects the growth and yield of crops, thus an appropriate and effective response to Pi fluctuation is critical. However, how crops orchestrate Pi signaling and growth under Pi starvation conditions to optimize the growth defense tradeoff remains unclear. Here we show that a Pi starvation-induced transcription factor NIGT1 (NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1) controls plant growth and prevents a hyper-response to Pi starvation by directly repressing the expression of growth-related and Pi-signaling genes to achieve a balance between growth and response under a varying Pi environment. NIGT1 directly binds to the promoters of Pi starvation signaling marker genes, like IPS1, miR827, and SPX2, under Pi-deficient conditions to mitigate the Pi-starvation responsive (PSR). It also directly represses the expression of vacuolar Pi efflux transporter genes VPE1/2 to regulate plant Pi homeostasis. We further demonstrate that NIGT1 constrains shoot growth by repressing the expression of growth-related regulatory genes, including brassinolide signal transduction master regulator BZR1, cell division regulator CYCB1;1, and DNA replication regulator PSF3. Our findings reveal the function of NIGT1 in orchestrating plant growth and Pi starvation signaling, and also provide evidence that NIGT1 acts as a safeguard to avoid hyper-response during Pi starvation stress in rice.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
OsNAC5 orchestrates OsABI5 to fine-tune cold tolerance in rice
Ruiqing Li, Yue Song, Xueqiang Wang, Chenfan Zheng, Bo Liu, Huali Zhang, Jian Ke, Xuejing Wu, Liquan Wu, Ruifang Yang and Meng Jiang
J Integr Plant Biol 2024, 66 (4): 660-682.  
DOI: 10.1111/jipb.13585
Abstract (Browse 415)  |   Save
Due to its tropical origins, rice (Oryza sativa) is susceptible to cold stress, which poses severe threats to production. OsNAC5, a NAC-type transcription factor, participates in the cold stress response of rice, but the detailed mechanisms remain poorly understood. Here, we demonstrate that OsNAC5 positively regulates cold tolerance at germination and in seedlings by directly activating the expression of ABSCISIC ACID INSENSITIVE 5 (OsABI5). Haplotype analysis indicated that single nucleotide polymorphisms in a NAC-binding site in the OsABI5 promoter are strongly associated with cold tolerance. OsNAC5 also enhanced OsABI5 stability, thus regulating the expression of cold-responsive (COR) genes, enabling fine-tuned control of OsABI5 action for rapid, precise plant responses to cold stress. DNA affinity purification sequencing coupled with transcriptome deep sequencing identified several OsABI5 target genes involved in COR expression, including DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR 1A (OsDREB1A), OsMYB20, and PEROXIDASE 70 (OsPRX70). In vivo and in vitro analyses suggested that OsABI5 positively regulates COR gene transcription, with marked COR upregulation in OsNAC5-overexpressing lines and downregulation in osnac5 and/or osabi5 knockout mutants. This study extends our understanding of cold tolerance regulation via OsNAC5 through the OsABI5-CORs transcription module, which may be used to ameliorate cold tolerance in rice via advanced breeding.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Elucidation of the melitidin biosynthesis pathway in pummelo
Shuangqian Shen, Shouchuang Wang, Chenkun Yang, Chao Wang, Qianqian Zhou, Shen Zhou, Ran Zhang, Yufei Li, Zixuan Wang, Liupan Dai, Wenjv Peng, Yingchen Hao, Hao Guo, Guangping Cao, Xianqing Liu, Fan Yao, Qiang Xu, Alisdair R. Fernie and Jie Luo
J Integr Plant Biol 2023, 65 (11): 2505-2518.  
DOI: 10.1111/jipb.13564
Abstract (Browse 380)  |   Save
Specialized plant metabolism is a rich resource of compounds for drug discovery. The acylated flavonoid glycoside melitidin is being developed as an anti-cholesterol statin drug candidate, but its biosynthetic route in plants has not yet been fully characterized. Here, we describe the gene discovery and functional characterization of a new flavonoid gene cluster (UDP-glucuronosyltransferases (CgUGTs), 1,2 rhamnosyltransferase (Cg1,2RhaT), acyltransferases (CgATs)) that is responsible for melitidin biosynthesis in pummelo (Citrus grandis (L.) Osbeck). Population variation analysis indicated that the tailoring of acyltransferases, specific for bitter substrates, mainly determine the natural abundance of melitidin. Moreover, 3-hydroxy-3-methylglutaryl-CoA reductase enzyme inhibition assays showed that the product from this metabolic gene cluster, melitidin, may be an effective anti-cholesterol statin drug candidate. Co-expression of these clustered genes in Nicotiana benthamiana resulted in the formation of melitidin, demonstrating the potential for metabolic engineering of melitidin in a heterologous plant system. This study establishes a biosynthetic pathway for melitidin, which provides genetic resources for the breeding and genetic improvement of pummelo aimed at fortifying the content of biologically active metabolites.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Regulation of FLC nuclear import by coordinated action of the NUP62-subcomplex and importin β SAD2
Gang Chen, Danyun Xu, Qing Liu, Zhichuang Yue, Biao Dai, Shujuan Pan, Yongqiang Chen, Xinhua Feng and Honghong Hu
J Integr Plant Biol 2023, 65 (9): 2086-2106.  
DOI: 10.1111/jipb.13540
Abstract (Browse 377)  |   Save
Flowering locus C (FLC) is a central transcriptional repressor that controls flowering time. However, how FLC is imported into the nucleus is unknown. Here, we report that Arabidopsis nucleoporins 62 (NUP62), NUP58, and NUP54 composed NUP62-subcomplex modulates FLC nuclear import during floral transition in an importin α-independent manner, via direct interaction. NUP62 recruits FLC to the cytoplasmic filaments and imports it into the nucleus through the NUP62-subcomplex composed central channel. Importin β supersensitive to ABA and drought 2 (SAD2), a carrier protein, is critical for FLC nuclear import and flower transition, which facilitates FLC import into the nucleus mainly through the NUP62-subcomplex. Proteomics, RNA-seq, and cell biological analyses indicate that the NUP62-subcomplex mainly mediates the nuclear import of cargos with unconventional nuclear localization sequences (NLSs), such as FLC. Our findings illustrate the mechanisms of the NUP62-subcomplex and SAD2 on FLC nuclear import process and floral transition, and provide insights into the role of NUP62-subcomplex and SAD2 in protein nucleocytoplasmic transport in plants.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
DIW1 encoding a clade I PP2C phosphatase negatively regulates drought tolerance by de-phosphorylating TaSnRK1.1 in wheat
Jingyi Wang, Chaonan Li, Long Li, Lifeng Gao, Ge Hu, Yanfei Zhang, Matthew P. Reynolds, Xueyong Zhang, Jizeng Jia, Xinguo Mao and Ruilian Jing
J Integr Plant Biol 2023, 65 (8): 1918-1936.  
doi: 10.1111/jipb.13504
Abstract (Browse 373)  |   Save
Drought seriously impacts wheat production (Triticum aestivum L.), while the exploitation and utilization of genes for drought tolerance are insufficient. Leaf wilting is a direct reflection of drought tolerance in plants. Clade A PP2Cs are abscisic acid (ABA) co-receptors playing vital roles in the ABA signaling pathway, regulating drought response. However, the roles of other clade PP2Cs in drought tolerance, especially in wheat, remain largely unknown. Here, we identified a gain-of-function drought-induced wilting 1 (DIW1) gene from the wheat Aikang 58 mutant library by map-based cloning, which encodes a clade I protein phosphatase 2C (TaPP2C158) with enhanced protein phosphatase activity. Phenotypic analysis of overexpression and CRISPR/Cas9 mutant lines demonstrated that DIW1/TaPP2C158 is a negative regulator responsible for drought resistance. We found that TaPP2C158 directly interacts with TaSnRK1.1 and de-phosphorylates it, thus inactivating the TaSnRK1.1–TaAREB3 pathway. TaPP2C158 protein phosphatase activity is negatively correlated with ABA signaling. Association analysis suggested that C-terminal variation of TaPP2C158 changing protein phosphatase activity is highly correlated with the canopy temperature, and seedling survival rate under drought stress. Our data suggest that the favorable allele with lower phosphatase activity of TaPP2C158 has been positively selected in Chinese breeding history. This work benefits us in understanding the molecular mechanism of wheat drought tolerance, and provides elite genetic resources and molecular markers for improving wheat drought tolerance.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development
Pengtao Wang, Wen‐Cheng Liu, Chao Han, Situ Wang, Ming‐Yi Bai and Chun‐Peng Song
J Integr Plant Biol 2024, 66 (3): 330-367.  
doi: 10.1111/jipb.13601
Abstract (Browse 334)  |   Save
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Ca2+-independent ZmCPK2 is inhibited by Ca2+-dependent ZmCPK17 during drought response in maize
Xiaoying Hu, Jinkui Cheng, Minmin Lu, Tingting Fang, Yujuan Zhu, Zhen Li, Xiqing Wang, Yu Wang, Yan Guo, Shuhua Yang, Zhizhong Gong
J Integr Plant Biol 2024, 66 (7): 1313-1333.  
DOI: 10.1111/jipb.13675
Abstract (Browse 315)  |   Save
Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca2+ can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
α-Ketoglutarate dehydrogenase (KGDH): A new balancer between energy metabolism and gene expression in plants
Wenwen Zhu and Yikun He
J Integr Plant Biol 2023, 65 (8): 1843-1845.  
doi: 10.1111/jipb.13544
Abstract (Browse 307)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The E3 ubiquitin ligase SINA1 and the protein kinase BIN2 cooperatively regulate PHR1 in apple anthocyanin biosynthesis
Jian‐Ping An, Hong‐Liang Li, Zhi‐Ying Liu, Da‐Ru Wang, Chun‐Xiang You and Yuepeng Han
J Integr Plant Biol 2023, 65 (9): 2175-2193.  
DOI: 10.1111/jipb.13538
Abstract (Browse 304)  |   Save
PHR1 (PHOSPHATE STARVATION RESPONSE1) plays key roles in the inorganic phosphate (Pi) starvation response and in Pi deficiency-induced anthocyanin biosynthesis in plants. However, the post-translational regulation of PHR1 is unclear, and the molecular basis of PHR1-mediated anthocyanin biosynthesis remains elusive. In this study, we determined that MdPHR1 was essential for Pi deficiency-induced anthocyanin accumulation in apple (Malus×domestica). MdPHR1 interacted with MdWRKY75, a positive regulator of anthocyanin biosynthesis, to enhance the MdWRKY75-activated transcription of MdMYB1, leading to anthocyanin accumulation. In addition, the E3 ubiquitin ligase SEVEN IN ABSENTIA1 (MdSINA1) negatively regulated MdPHR1-promoted anthocyanin biosynthesis via the ubiquitination-mediated degradation of MdPHR1. Moreover, the protein kinase apple BRASSINOSTEROID INSENSITIVE2 (MdBIN2) phosphorylated MdPHR1 and positively regulated MdPHR1-mediated anthocyanin accumulation by attenuating the MdSINA1-mediated ubiquitination degradation of MdPHR1. Taken together, these findings not only demonstrate the regulatory role of MdPHR1 in Pi starvation induced anthocyanin accumulation, but also provide an insight into the post-translational regulation of PHR1.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The transcription factor NAC102 confers cadmium tolerance by regulating WAKL11 expression and cell wall pectin metabolism in Arabidopsis
Guang Hao Han, Ru Nan Huang, Li Hong Hong, Jia Xi Xu, Yi Guo Hong, Yu Huan Wu and Wei Wei Chen
J Integr Plant Biol 2023, 65 (10): 2262-2278.  
DOI: 10.1111/jipb.13557
Abstract (Browse 298)  |   Save
Cadmium (Cd) toxicity severely limits plant growth and development. Moreover, Cd accumulation in vegetables, fruits, and food crops poses health risks to animals and humans. Although the root cell wall has been implicated in Cd stress in plants, whether Cd binding by cell wall polysaccharides contributes to tolerance remains controversial, and the mechanism underlying transcriptional regulation of cell wall polysaccharide biosynthesis in response to Cd stress is unknown. Here, we functionally characterized an Arabidopsis thaliana NAC-type transcription factor, NAC102, revealing its role in Cd stress responses. Cd stress rapidly induced accumulation of NAC102.1, the major transcript encoding functional NAC102, especially in the root apex. Compared to wild type (WT) plants, a nac102 mutant exhibited enhanced Cd sensitivity, whereas NAC102.1-overexpressing plants displayed the opposite phenotype. Furthermore, NAC102 localizes to the nucleus, binds directly to the promoter of WALL-ASSOCIATED KINASE-LIKE PROTEIN11 (WAKL11), and induces transcription, thereby facilitating pectin degradation and decreasing Cd binding by pectin. Moreover, WAKL11 overexpression restored Cd tolerance in nac102 mutants to the WT levels, which was correlated with a lower pectin content and lower levels of pectin-bound Cd. Taken together, our work shows that the NAC102-WAKL11 module regulates cell wall pectin metabolism and Cd binding, thus conferring Cd tolerance in Arabidopsis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
AtMAC stabilizes the phragmoplast by crosslinking microtubules and actin filaments during cytokinesis
Pingzhou Du, Yu Liu, Lu Deng, Dong Qian, Xiuhua Xue, Ting Yang, Tonghui Li, Yun Xiang and Haiyun Ren
J Integr Plant Biol 2023, 65 (8): 1950-1965.  
doi: 10.1111/jipb.13497
Abstract (Browse 294)  |   Save
The phragmoplast, a structure crucial for the completion of cytokinesis in plant cells, is composed of antiparallel microtubules (MTs) and actin filaments (AFs). However, how the parallel structure of phragmoplast MTs and AFs is maintained, especially during centrifugal phragmoplast expansion, remains elusive. Here, we analyzed a new Arabidopsis thaliana MT and AF crosslinking protein (AtMAC). When AtMAC was deleted, the phragmoplast showed disintegrity during centrifugal expansion, and the resulting phragmoplast fragmentation led to incomplete cell plates. Overexpression of AtMAC increased the resistance of phragmoplasts to depolymerization and caused the formation of additional phragmoplasts during cytokinesis. Biochemical experiments showed that AtMAC crosslinked MTs and AFs in vitro, and the truncated AtMAC protein, N-CC1, was the key domain controlling the ability of AtMAC. Further analysis showed that N-CC1(51–154) is the key domain for binding MTs, and N-CC1(51–125) for binding AFs. In conclusion, AtMAC is the novel MT and AF crosslinking protein found to be involved in regulation of phragmoplast organization during centrifugal phragmoplast expansion, which is required for complete cytokinesis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
Designing salt stress-resilient crops: Current progress and future challenges
Xiaoyan Liang, Jianfang Li, Yongqing Yang, Caifu Jiang and Yan Guo
J Integr Plant Biol 2024, 66 (3): 303-329.  
doi: 10.1111/jipb.13599
Abstract (Browse 292)  |   Save
Excess soil salinity affects large regions of land and is a major hindrance to crop production worldwide. Therefore, understanding the molecular mechanisms of plant salt tolerance has scientific importance and practical significance. In recent decades, studies have characterized hundreds of genes associated with plant responses to salt stress in different plant species. These studies have substantially advanced our molecular and genetic understanding of salt tolerance in plants and have introduced an era of molecular design breeding of salt-tolerant crops. This review summarizes our current knowledge of plant salt tolerance, emphasizing advances in elucidating the molecular mechanisms of osmotic stress tolerance, salt-ion transport and compartmentalization, oxidative stress tolerance, alkaline stress tolerance, and the trade-off between growth and salt tolerance. We also examine recent advances in understanding natural variation in the salt tolerance of crops and discuss possible strategies and challenges for designing salt stress-resilient crops. We focus on the model plant Arabidopsis (Arabidopsis thaliana) and the four most-studied crops: rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), and soybean (Glycine max).
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
MaBEL1 regulates banana fruit ripening by activating cell wall and starch degradation-related genes
Zunyang Song, Xiaoyang Zhu, Xiuhua Lai, Hangcong Chen, Lihua Wang, Yulin Yao, Weixin Chen and Xueping Li
J Integr Plant Biol 2023, 65 (9): 2036-2055.  
doi: 10.1111/jipb.13506
Abstract (Browse 287)  |   Save
Banana is a typical subtropical fruit, sensitive to chilling injuries and prone to softening disorder. However, the underlying regulatory mechanisms of the softening disorder caused by cold stress remain obscure. Herein, we found that BEL1-LIKE HOMEODOMAIN transcription factor 1 (MaBEL1) and its associated proteins regulate the fruit softening and ripening process. The transcript and protein levels of MaBEL1 were up-regulated with fruit ripening but severely repressed by the chilling stress. Moreover, the MaBEL1 protein interacted directly with the promoters of the cell wall and starch degradation-related genes, such as MaAMY3, MaXYL32, and MaEXP-A8. The transient overexpression of MaBEL1 alleviated fruit chilling injury and ripening disorder caused by cold stress and promoted fruit softening and ripening of “Fenjiao” banana by inducing ethylene production and starch and cell wall degradation. The accelerated ripening was also validated by the ectopic overexpression in tomatoes. Conversely, MaBEL1-silencing aggravated the chilling injury and ripening disorder and repressed fruit softening and ripening by inhibiting ethylene production and starch and cell wall degradation. MaABI5-like and MaEBF1, the two positive regulators of the fruit softening process, interacted with MaBEL1 to enhance the promoter activity of the starch and cell wall degradation-related genes. Moreover, the F-box protein MaEBF1 does not modulate the degradation of MaBEL1, which regulates the transcription of MaABI5-like protein. Overall, we report a novel MaBEL1-MaEBF1-MaABI5-like complex system that mediates the fruit softening and ripening disorder in “Fenjiao” bananas caused by cold stress.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
OsWRKY78 regulates panicle exsertion via gibberellin signaling pathway in rice
Enyang Mei, Mingliang He, Min Xu, Jiaqi Tang, Jiali Liu, Yingxiang Liu, Zhipeng Hong, Xiufeng Li, Zhenyu Wang, Qingjie Guan, Xiaojie Tian and Qingyun Bu
J Integr Plant Biol 2024, 66 (4): 771-786.  
DOI: 10.1111/jipb.13636
Abstract (Browse 286)  |   Save
Panicle exsertion is one of the crucial agronomic traits in rice (Oryza sativa). Shortening of panicle exsertion often leads to panicle enclosure and severely reduces seed production. Gibberellin (GA) plays important roles in regulating panicle exsertion. However, the underlying mechanism and the relative regulatory network remain elusive. Here, we characterized the oswrky78 mutant showing severe panicle enclosure, and found that the defect of oswrky78 is caused by decreased bioactive GA contents. Biochemical analysis demonstrates that OsWRKY78 can directly activate GA biosynthesis and indirectly suppress GA metabolism. Moreover, we found OsWRKY78 can interact with and be phosphorylated by mitogen-activated protein kinase (MAPK) kinase OsMAPK6, and this phosphorylation can enhance OsWRKY78 stability and is necessary for its biological function. Taken together, these results not only reveal the critical function of OsWRKY78, but also reveal its mechanism via mediating crosstalk between MAPK and the GA signaling pathway in regulating panicle exsertion.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The dual-action mechanism of Arabidopsis cryptochromes
Gao-Ping Qu, Bochen Jiang and Chentao Lin
J Integr Plant Biol 2024, 66 (5): 883-896.  
doi: 10.1111/jipb.13578
Abstract (Browse 285)  |   Save
Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the “Lock-and-Key” and the “Liquid-Liquid Phase Separation (LLPS)” mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
RALF22 promotes plant immunity and amplifies the Pep3 immune signal
Yu-Han He, Song-Yu Chen, Xing-Yan Chen, You-Ping Xu, Yan Liang and Xin-Zhong Cai
J Integr Plant Biol 2023, 65 (11): 2519-2534.  
DOI: 10.1111/jipb.13566
Abstract (Browse 282)  |   Save
Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen-associated molecular pattern (PAMP)-triggered immunity via suppressing PAMP-induced complex formation between the pattern recognition receptor (PRR) and its co-receptor BAK1. However, the direct and positive role of RALFs in plant immunity remains largely unknown. Herein, we report the direct and positive roles of a typical RALF, RALF22, in plant immunity. RALF22 alone directly elicited a variety of typical immune responses and triggered resistance against the devastating necrotrophic fungal pathogen Sclerotinia sclerotiorum in a FERONIA (FER)-dependent manner. LORELEI (LRE)-like glycosylphosphatidylinositol (GPI)-anchored protein 1 (LLG1) and NADPH oxidase RBOHD were required for RALF22-elicited reactive oxygen species (ROS) generation. The mutation of cysteines conserved in the C terminus of RALFs abolished, while the constitutive formation of two disulfide bridges between these cysteines promoted the RALF22-elicited ROS production and resistance against S. sclerotiorum, demonstrating the requirement of these cysteines in the functions of RALF22 in plant immunity. Furthermore, RALF22 amplified the Pep3-induced immune signal by dramatically increasing the abundance of PROPEP3 transcript and protein. Supply with RALF22 induced resistance against S. sclerotiorum in Brassica crop plants. Collectively, our results reveal that RALF22 triggers immune responses and augments the Pep3-induced immune signal in a FER-dependent manner, and exhibits the potential to be exploited as an immune elicitor in crop protection.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
Phase separation of S-RNase promotes self-incompatibility in Petunia hybrida
Huayang Tian, Hongkui Zhang, Huaqiu Huang, Yu'e Zhang and Yongbiao Xue
J Integr Plant Biol 2024, 66 (5): 986-1006.  
doi: 10.1111/jipb.13584
Abstract (Browse 282)  |   Save
Self-incompatibility (SI) is an intraspecific reproductive barrier widely present in angiosperms. The SI system with the broadest occurrence in angiosperms is based on an S-RNase linked to a cluster of multiple S-locus F-box (SLF) genes found in the Solanaceae, Plantaginaceae, Rosaceae, and Rutaceae. Recent studies reveal that non-self S-RNase is degraded by the Skip Cullin F-box (SCF)SLF-mediated ubiquitin–proteasome system in a collaborative manner in Petunia, but how self-RNase functions largely remains mysterious. Here, we show that S-RNases form S-RNase condensates (SRCs) in the self-pollen tube cytoplasm through phase separation and the disruption of SRC formation breaks SI in self-incompatible Petunia hybrida. We further find that the pistil SI factors of a small asparagine-rich protein HT-B and thioredoxin h together with a reduced state of the pollen tube all promote the expansion of SRCs, which then sequester several actin-binding proteins, including the actin polymerization factor PhABRACL, the actin polymerization activity of which is reduced by S-RNase in vitro. Meanwhile, we find that S-RNase variants lacking condensation ability fail to recruit PhABRACL and are unable to induce actin foci formation required for pollen tube growth inhibition. Taken together, our results demonstrate that phase separation of S-RNase promotes SI response in P. hybrida, revealing a new mode of S-RNase action.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
A straight-forward seed production technology system for foxtail millet (Setaria italica)
Wei Zhang, Xiantao Qi, Hui Zhi, Yushuang Ren, Linlin Zhang, Yuanzhu Gao, Yi Sui, Haoshan Zhang, Sha Tang, Guanqing Jia, Chuanxiao Xie, Chuanyin Wu and Xianmin Diao
J Integr Plant Biol 2023, 65 (9): 2023-2035.  
DOI: 10.1111/jipb.13503
Abstract (Browse 280)  |   Save
For autogamous crops, a precondition for using heterosis is to produce sufficient pure male-sterile female parents that can be used to produce hybrid seeds. To date, cytoplasmic male sterility (CMS) and environment-sensitive genic male sterility (EGMS) have been used commercially to exploit heterosis for autogamous species. However, neither CMS nor EGMS has been established for foxtail millet (Setaria italica). Here, we report on the establishment and application of a seed production technology (SPT) system for this crop. First, we established a DsRed-based SPT system, but found that it was unsuitable because it required the use of a fluorescent device for seed sorting. Instead, we constructed an SPT system with de novo betalain biosynthesis as the selection marker. This allowed us to distinguish transgenic seeds with the naked eye, thereby facilitating the identification of SPT maintainer line seeds. In this system, a seed sorter was not required to obtain sufficient seeds. The key point of the strategy is that the seed pool of the SPT maintainer line is propagated by artificial identification and harvesting of male-fertile individuals in the field, and the male-sterile line seed pool for hybrid production is produced and propagated by free pollination of male-sterile plants with the SPT maintainer line. In a field experiment, we obtained 423.96 kg male-sterile line seeds per acre, which is sufficient to plant 700.18 acres of farmland for hybrid seed production or male-sterile line reproduction. Our study therefore describes a powerful tool for hybrid seed production in foxtail millet, and demonstrates how the SPT system can be used for a small-grained crop with high reproduction efficiency.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(2)
  
Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond
Fereshteh Jafari, Baobao Wang, Haiyang Wang and Junjie Zou
J Integr Plant Biol 2024, 66 (5): 849-864.  
doi: 10.1111/jipb.13603
Abstract (Browse 277)  |   Save
Maize is a major staple crop widely used as food, animal feed, and raw materials in industrial production. High-density planting is a major factor contributing to the continuous increase of maize yield. However, high planting density usually triggers a shade avoidance response and causes increased plant height and ear height, resulting in lodging and yield loss. Reduced plant height and ear height, more erect leaf angle, reduced tassel branch number, earlier flowering, and strong root system architecture are five key morphological traits required for maize adaption to high-density planting. In this review, we summarize recent advances in deciphering the genetic and molecular mechanisms of maize involved in response to high-density planting. We also discuss some strategies for breeding advanced maize cultivars with superior performance under high-density planting conditions.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Efficient CRISPR/Cas9-mediated genome editing in sheepgrass (Leymus chinensis)
Zhelong Lin, Lei Chen, Shanjie Tang, Mengjie Zhao, Tong Li, Jia You, Changqing You, Boshu Li, Qinghua Zhao, Dongmei Zhang, Jianli Wang, Zhongbao Shen, Xianwei Song, Shuaibin Zhang and Xiaofeng Cao
J Integr Plant Biol 2023, 65 (11): 2416-2420.  
DOI: 10.1111/jipb.13567
Abstract (Browse 276)  |   Save
The lack of genome editing platforms has hampered efforts to study and improve forage crops that can be grown on lands not suited to other crops. Here, we established efficient Agrobacterium-mediated clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) genome editing in a perennial, stress-tolerant forage grass, sheepgrass (Leymus chinensis). By screening for active single-guide RNAs (sgRNAs), accessions that regenerate well, suitable Agrobacterium strains, and optimal culture media, and co-expressing the morphogenic factor TaWOX5, we achieved 11% transformation and 5.83% editing efficiency in sheepgrass. Knocking out Teosinte Branched1 (TB1) significantly increased tiller number and biomass. This study opens avenues for studying gene function and breeding in sheepgrass.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Cell type-specific proteomics uncovers a RAF15-SnRK2.6/OST1 kinase cascade in guard cells
Hongliang Wang, Yubei Wang, Tian Sang, Zhen Lin, Rongxia Li, Weiwei Ren, Xin Shen, Bing Zhao, Xiao Wang, Xuebin Zhang, Shaoqun Zhou, Shaojun Dai, Honghong Hu, Chun‐Peng Song and Pengcheng Wang
J Integr Plant Biol 2023, 65 (9): 2122-2137.  
doi: 10.1111/jipb.13536
Abstract (Browse 269)  |   Save
Multicellular organisms such as plants contain various cell types with specialized functions. Analyzing the characteristics of each cell type reveals specific cell functions and enhances our understanding of organization and function at the organismal level. Guard cells (GCs) are specialized epidermal cells that regulate the movement of the stomata and gaseous exchange, and provide a model genetic system for analyzing cell fate, signaling, and function. Several proteomics analyses of GC are available, but these are limited in depth. Here we used enzymatic isolation and flow cytometry to enrich GC and mesophyll cell protoplasts and perform in-depth proteomics in these two major cell types in Arabidopsis leaves. We identified approximately 3,000 proteins not previously found in the GC proteome and more than 600 proteins that may be specific to GC. The depth of our proteomics enabled us to uncover a guard cell-specific kinase cascade whereby Raf15 and Snf1-related kinase2.6 (SnRK2.6)/OST1(open stomata 1) mediate abscisic acid (ABA)-induced stomatal closure. RAF15 directly phosphorylated SnRK2.6/OST1 at the conserved Ser175 residue in its activation loop and was sufficient to reactivate the inactive form of SnRK2.6/OST1. ABA-triggered SnRK2.6/OST1 activation and stomatal closure was impaired in raf15 mutants. We also showed enrichment of enzymes and flavone metabolism in GC, and consistent, dramatic accumulation of flavone metabolites. Our study answers the long-standing question of how ABA activates SnRK2.6/OST1 in GCs and represents a resource potentially providing further insights into the molecular basis of GC and mesophyll cell development, metabolism, structure, and function.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Fine-tuning brassinosteroid biosynthesis via 3′UTR-dependent decay of CPD mRNA modulates wood formation in Populus
Dian Wang, Xiaoning Hao, Li Xu, Mengyan Zhao, Congpeng Wang, Xihao Yu, Yingzhen Kong, Mengzhu Lu, Gongke Zhou, Guohua Chai and Xianfeng Tang
J Integr Plant Biol 2023, 65 (8): 1852-1858.  
doi: 10.1111/jipb.13509
Abstract (Browse 268)  |   Save
Brassinosteroids (BRs) are plant hormones that regulate wood formation in trees. Currently, little is known about the post-transcriptional regulation of BR synthesis. Here, we show that during wood formation, fine-tuning BR synthesis requires 3′UTR-dependent decay of Populus CONSTITUTIVE PHOTOMORPHOGENIC DWARF 1 (PdCPD1). Overexpression of PdCPD1 or its 3′ UTR fragment resulted in a significant increase of BR levels and inhibited secondary growth. In contrast, transgenic poplars repressing PdCPD1 3′ UTR expression displayed moderate levels of BR and promoted wood formation. We show that the Populus GLYCINE-RICH RNA-BINDING PROTEIN 1 (PdGRP1) directly binds to a GU-rich element in 3′ UTR of PdCPD1, leading to its mRNA decay. We thus provide a post-transcriptional mechanism underlying BRs synthesis during wood formation, which may be useful for genetic manipulation of wood biomass in trees.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
ClSnRK2.3 negatively regulates watermelon fruit ripening and sugar accumulation
Jinfang Wang, Yanping Wang, Yongtao Yu, Jie Zhang, Yi Ren, Shouwei Tian, Maoying Li, Shengjin Liao, Shaogui Guo, Guoyi Gong, Haiying Zhang and Yong Xu
J Integr Plant Biol 2023, 65 (10): 2336-2348.  
DOI: 10.1111/jipb.13535
Abstract (Browse 263)  |   Save
Watermelon (Citrullus lanatus) as non-climacteric fruit is domesticated from the ancestors with inedible fruits. We previously revealed that the abscisic acid (ABA) signaling pathway gene ClSnRK2.3 might influence watermelon fruit ripening. However, the molecular mechanisms are unclear. Here, we found that the selective variation of ClSnRK2.3 resulted in lower promoter activity and gene expression level in cultivated watermelons than ancestors, which indicated ClSnRK2.3 might be a negative regulator in fruit ripening. Overexpression (OE) of ClSnRK2.3 significantly delayed watermelon fruit ripening and suppressed the accumulation of sucrose, ABA and gibberellin GA4. Furthermore, we determined that the pyrophosphate-dependent phosphofructokinase (ClPFP1) in sugar metabolism pathway and GA biosynthesis enzyme GA20 oxidase (ClGA20ox) could be phosphorylated by ClSnRK2.3 and thereby resulting in accelerated protein degradation in OE lines and finally led to low levels of sucrose and GA4. Besides that, ClSnRK2.3 phosphorylated homeodomain-leucine zipper protein (ClHAT1) and protected it from degradation to suppress the expression of the ABA biosynthesis gene 9’-cis-epoxycarotenoid dioxygenase 3 (ClNCED3). These results indicated that ClSnRK2.3 negatively regulated watermelon fruit ripening by manipulating the biosynthesis of sucrose, ABA and GA4. Altogether, these findings revealed a novel regulatory mechanism in non-climacteric fruit development and ripening.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Plastid KEA-type cation/H+ antiporters are required for vacuolar protein trafficking in Arabidopsis
Xiao Zhang, Lu Wang, Ting Pan, Xuexia Wu, Jinbo Shen, Liwen Jiang, Hiromi Tajima, Eduardo Blumwald and Quan‐Sheng Qiu
J Integr Plant Biol 2023, 65 (9): 2157-2174.  
DOI: 10.1111/jipb.13537
Abstract (Browse 260)  |   Save
Arabidopsis plastid antiporters KEA1 and KEA2 are critical for plastid development, photosynthetic efficiency, and plant development. Here, we show that KEA1 and KEA2 are involved in vacuolar protein trafficking. Genetic analyses found that the kea1 kea2 mutants had short siliques, small seeds, and short seedlings. Molecular and biochemical assays showed that seed storage proteins were missorted out of the cell and the precursor proteins were accumulated in kea1 kea2. Protein storage vacuoles (PSVs) were smaller in kea1 kea2. Further analyses showed that endosomal trafficking in kea1 kea2 was compromised. Vacuolar sorting receptor 1 (VSR1) subcellular localizations, VSR–cargo interactions, and p24 distribution on the endoplasmic reticulum (ER) and Golgi apparatus were affected in kea1 kea2. Moreover, plastid stromule growth was reduced and plastid association with the endomembrane compartments was disrupted in kea1 kea2. Stromule growth was regulated by the cellular pH and K+ homeostasis maintained by KEA1 and KEA2. The organellar pH along the trafficking pathway was altered in kea1 kea2. Overall, KEA1 and KEA2 regulate vacuolar trafficking by controlling the function of plastid stromules via adjusting pH and K+ homeostasis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
The salt-activated CBF1/CBF2/CBF3-GALS1 module fine-tunes galactan-induced salt hypersensitivity in Arabidopsis
Jingwei Yan, Ya Liu, Jiawen Yan, Zhihui Liu, Heqiang Lou and Jiasheng Wu
J Integr Plant Biol 2023, 65 (8): 1904-1917.  
DOI: 10.1111/jipb.13501
Abstract (Browse 259)  |   Save
Plant growth and development are significantly hampered in saline environments, limiting agricultural productivity. Thus, it is crucial to unravel the mechanism underlying plant responses to salt stress. β-1,4-Galactan (galactan), which forms the side chains of pectic rhamnogalacturonan I, enhances plant sensitivity to high-salt stress. Galactan is synthesized by GALACTAN SYNTHASE1 (GALS1). We previously showed that NaCl relieves the direct suppression of GALS1 transcription by the transcription factors BPC1 and BPC2 to induce the excess accumulation of galactan in Arabidopsis (Arabidopsis thaliana). However, how plants adapt to this unfavorable environment remains unclear. Here, we determined that the transcription factors CBF1, CBF2, and CBF3 directly interact with the GALS1 promoter and repress its expression, leading to reduced galactan accumulation and enhanced salt tolerance. Salt stress enhances the binding of CBF1/CBF2/CBF3 to the GALS1 promoter by inducing CBF1/CBF2/CBF3 transcription and accumulation. Genetic analysis suggested that CBF1/CBF2/CBF3 function upstream of GALS1 to modulate salt-induced galactan biosynthesis and the salt response. CBF1/CBF2/CBF3 and BPC1/BPC2 function in parallel to regulate GALS1 expression, thereby modulating the salt response. Our results reveal a mechanism in which salt-activated CBF1/CBF2/CBF3 inhibit BPC1/BPC2-regulated GALS1 expression to alleviate galactan-induced salt hypersensitivity, providing an activation/deactivation fine-tune mechanism for dynamic regulation of GALS1 expression under salt stress in Arabidopsis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(2)
  
Natural variation in STAYGREEN contributes to low-temperature tolerance in cucumber
Shaoyun Dong, Caixia Li, Haojie Tian, Weiping Wang, Xueyong Yang, Diane M. Beckles, Xiaoping Liu, Jiantao Guan, Xingfang Gu, Jiaqiang Sun, Han Miao and Shengping Zhang
J Integr Plant Biol 2023, 65 (12): 2552-2568.  
DOI: 10.1111/jipb.13571
Abstract (Browse 259)  |   Save
Low-temperature (LT) stress threatens cucumber production globally; however, the molecular mechanisms underlying LT tolerance in cucumber remain largely unknown. Here, using a genome-wide association study (GWAS), we found a naturally occurring single nucleotide polymorphism (SNP) in the STAYGREEN (CsSGR) coding region at the gLTT5.1 locus associated with LT tolerance. Knockout mutants of CsSGR generated by clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 exhibit enhanced LT tolerance, in particularly, increased chlorophyll (Chl) content and reduced reactive oxygen species (ROS) accumulation in response to LT. Moreover, the C-repeat Binding Factor 1 (CsCBF1) transcription factor can directly activate the expression of CsSGR. We demonstrate that the LT-sensitive haplotype CsSGRHapA, but not the LT-tolerant haplotype CsSGRHapG could interact with NON-YELLOW COLORING 1 (CsNYC1) to mediate Chl degradation. Geographic distribution of the CsSGR haplotypes indicated that the CsSGRHapG was selected in cucumber accessions from high latitudes, potentially contributing to LT tolerance during cucumber cold-adaptation in these regions. CsSGR mutants also showed enhanced tolerance to salinity, water deficit, and Pseudoperonospora cubensis, thus CsSGR is an elite target gene for breeding cucumber varieties with broad-spectrum stress tolerance. Collectively, our findings provide new insights into LT tolerance and will ultimately facilitate cucumber molecular breeding.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
TaCHP encoding C1-domain protein stably enhances wheat yield in saline-alkaline fields
Guilian Xiao, Minqin Wang, Xiaomeng Li, Zhengning Jiang, Hongjian Zhang, Derong Gao, Boqiao Zhang, Guangmin Xia and Mengcheng Wang
J Integr Plant Biol 2024, 66 (2): 169-171.  
doi: 10.1111/jipb.13605
Abstract (Browse 255)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat
Dongzhi Wang, Xiuxiu Zhang, Yuan Cao, Aamana Batool, Yongxin Xu, Yunzhou Qiao, Yongpeng Li, Hao Wang, Xuelei Lin, Xiaomin Bie, Xiansheng Zhang, Ruilian Jing, Baodi Dong, Yiping Tong, Wan Teng, Xigang Liu, Jun Xiao
J Integr Plant Biol 2024, 66 (7): 1295-1312.  
DOI: 10.1111/jipb.13670
Abstract (Browse 255)  |   Save
Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Natural variation of GmFATA1B regulates seed oil content and composition in soybean
Zhandong Cai, Peiqi Xian, Yanbo Cheng, Yuan Yang, Yakun Zhang, Zihang He, Chuwen Xiong, Zhibin Guo, Zhicheng Chen, Huiqian Jiang, Qibin Ma, Hai Nian and Liangfa Ge
J Integr Plant Biol 2023, 65 (10): 2368-2379.  
DOI: 10.1111/jipb.13561
Abstract (Browse 252)  |   Save
Soybean (Glycine max) produces seeds that are rich in unsaturated fatty acids and is an important oilseed crop worldwide. Seed oil content and composition largely determine the economic value of soybean. Due to natural genetic variation, seed oil content varies substantially across soybean cultivars. Although much progress has been made in elucidating the genetic trajectory underlying fatty acid metabolism and oil biosynthesis in plants, the causal genes for many quantitative trait loci (QTLs) regulating seed oil content in soybean remain to be revealed. In this study, we identified GmFATA1B as the gene underlying a QTL that regulates seed oil content and composition, as well as seed size in soybean. Nine extra amino acids in the conserved region of GmFATA1B impair its function as a fatty acyl–acyl carrier protein thioesterase, thereby affecting seed oil content and composition. Heterogeneously overexpressing the functional GmFATA1B allele in Arabidopsis thaliana increased both the total oil content and the oleic acid and linoleic acid contents of seeds. Our findings uncover a previously unknown locus underlying variation in seed oil content in soybean and lay the foundation for improving seed oil content and composition in soybean.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Temporal control of the Aux/IAA genes BnIAA32 and BnIAA34 mediates Brassica napus dual shade responses
Yafei Li, Yiyi Guo, Yue Cao, Pengguo Xia, Dongqing Xu, Ning Sun, Lixi Jiang and Jie Dong
J Integr Plant Biol 2024, 66 (5): 928-962.  
doi: 10.1111/jipb.13582
Abstract (Browse 247)  |   Save
Precise responses to changes in light quality are crucial for plant growth and development. For example, hypocotyls of shade-avoiding plants typically elongate under shade conditions. Although this typical shade-avoidance response (TSR) has been studied in Arabidopsis (Arabidopsis thaliana), the molecular mechanisms underlying shade tolerance are poorly understood. Here we report that B. napus (Brassica napus) seedlings exhibit dual shade responses. In addition to the TSR, B. napus seedlings also display an atypical shade response (ASR), with shorter hypocotyls upon perception of early-shade cues. Genome-wide selective sweep analysis indicated that ASR is associated with light and auxin signaling. Moreover, genetic studies demonstrated that phytochrome A (BnphyA) promotes ASR, whereas BnphyB inhibits it. During ASR, YUCCA8 expression is activated by early-shade cues, leading to increased auxin biosynthesis. This inhibits hypocotyl elongation, as young B. napus seedlings are highly sensitive to auxin. Notably, two non-canonical AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressor genes, BnIAA32 and BnIAA34, are expressed during this early stage. BnIAA32 and BnIAA34 inhibit hypocotyl elongation under shade conditions, and mutations in BnIAA32 and BnIAA34 suppress ASR. Collectively, our study demonstrates that the temporal expression of BnIAA32 and BnIAA34 determines the behavior of B. napus seedlings following shade-induced auxin biosynthesis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
SD-RLK28 positively regulates pollen hydration on stigmas as a PCP-Bβ receptor in Arabidopsis thaliana
Li Guo, Ziya Huang, Xingyu Chen, Min Yang, Miaomiao Yang, Ziwei Liu, Xuejie Han, Xiangjie Ma, Xiaoli Wang and Qiguo Gao
J Integr Plant Biol 2023, 65 (10): 2395-2406.  
doi: 10.1111/jipb.13547
Abstract (Browse 246)  |   Save
Pollen hydration on dry stigmas is strictly regulated by pollen–stigma interactions in Brassicaceae. Although several related molecular events have been described, the molecular mechanism underlying pollen hydration remains elusive. Multiple B-class pollen coat proteins (PCP-Bs) are involved in pollen hydration. Here, by analyzing the interactions of two PCP-Bs with three Arabidopsis thaliana stigmas strongly expressing S-domain receptor kinase (SD-RLK), we determined that SD-RLK28 directly interacts with PCP-Bβ. We investigated pollen hydration, pollen germination, pollen tube growth, and stigma receptivity in the sd-rlk28 and pcp-bβ mutants. PCP-Bβ acts in the pollen to regulate pollen hydration on stigmas. Loss of SD-RLK28 had no effect on pollen viability, and sd-rlk28 plants had normal life cycles without obvious defects. However, pollen hydration on sd-rlk28 stigmas was impaired and pollen tube growth in sd-rlk28 pistils was delayed. The defect in pollen hydration on sd-rlk28 stigmas was independent of changes in reactive oxygen species levels in stigmas. These results indicate that SD-RLK28 functions in the stigma as a PCP-Bβ receptor to positively regulate pollen hydration on dry stigmas.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
PROMOTIONS
Scan the QR code to view JIPB on WeChat
Follow us at @JIPBio on Twitter

PUBLISHED BY

ACKNOWLEDGEMENTS

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22