Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
  
PP2A interacts with KATANIN to promote microtubule organization and conical cell morphogenesis
Huibo Ren, Jinqiu Rao, Min Tang, Yaxing Li, Xie Dang and Deshu Lin
J Integr Plant Biol 2022, 64 (8): 1514-1530.  
DOI: 10.1111/jipb.13281
Abstract (Browse 830)  |   Save

The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis. The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the plant and animal kingdoms. We previously used conical cell of Arabidopsis thaliana petals as a model system to investigate cortical microtubule organization and cell morphogenesis and determined that KATANIN promotes the formation of circumferential cortical microtubule arrays in conical cells. Here, we demonstrate that the conserved protein phosphatase PP2A interacts with and dephosphorylates KATANIN to promote the formation of circumferential cortical microtubule arrays in conical cells. KATANIN undergoes cycles of phosphorylation and dephosphorylation. Using co-immunoprecipitation coupled with mass spectrometry, we identified PP2A subunits as KATANIN-interacting proteins. Further biochemical studies showed that PP2A interacts with and dephosphorylates KATANIN to stabilize its cellular abundance. Similar to the katanin mutant, mutants for genes encoding PP2A subunits showed disordered cortical microtubule arrays and defective conical cell shape. Taken together, these findings identify PP2A as a regulator of conical cell shape and suggest that PP2A mediates KATANIN phospho-regulation during plant cell morphogenesis.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(4)
  
Variations in OsSPL10 confer drought tolerance by directly regulating OsNAC2 expression and ROS production in rice
Yingxiu Li, Shichen Han, Xingming Sun, Najeeb Ullah Khan, Qun Zhong, Zhanying Zhang, Hongliang Zhang, Feng Ming, Zichao Li and Jinjie Li
J Integr Plant Biol 2023, 65 (4): 918-933.  
DOI: 10.1111/jipb.13414
Abstract (Browse 564)  |   Save
Drought is a major factor restricting the production of rice (Oryza sativa L.). The identification of natural variants for drought stress‐ related genes is an important step toward developing genetically improved rice varieties. Here, we characterized a member of the SQUAMOSA PROMOTER BINDING PROTEIN‐LIKE (SPL) family, OsSPL10, as a transcription factor involved in the regulation of drought tolerance in rice. OsSPL10 appears to play a vital role in drought tolerance by controlling reactive oxygen species (ROS) production and stomatal movements. Haplotype and allele frequency analyses of OsSPL10 indicated that most upland rice and improved lowland rice varieties harbor the OsSPL10Hap1 allele, whereas the OsSPL10Hap2 allele was mainly present in lowland and landrace rice varieties. Importantly, we demonstrated that the varieties with the OsSPL10Hap1 allele showed low expression levels of OsSPL10 and its downstream gene, OsNAC2, which decreases the expression of OsAP37 and increases the expression of OsCOX11, thus preventing ROS accumulation and programmed cell death (PCD). Furthermore, the knockdown or knockout of OsSPL10 induced fast stomatal closure and prevented water loss, thereby improving drought tolerance in rice. Based on these observations, we propose that OsSPL10 confers drought tolerance by regulating OsNAC2 expression and that OsSPL10Hap1 could be a valuable haplotype for the genetic improvement of drought tolerance in rice.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(7)
  
Recent progression and future perspectives in cotton genomic breeding
Zhaoen Yang, Chenxu Gao, Yihao Zhang, Qingdi Yan, Wei Hu, Lan Yang, Zhi Wang and Fuguang Li
J Integr Plant Biol 2023, 65 (2): 548-569.  
doi: 10.1111/jipb.13388
Abstract (Browse 536)  |   Save
Upland cotton is an important global cash crop for its long seed fibers and high edible oil and protein content. Progress in cotton genomics promotes the advancement of cotton genetics, evolutionary studies, functional genetics, and breeding, and has ushered cotton research and breeding into a new era. Here, we summarize high-impact genomics studies for cotton from the last 10 years. The diploid Gossypium arboreum and allotetraploid Gossypium hirsutum are the main focus of most genetic and genomic studies. We next review recent progress in cotton molecular biology and genetics, which builds on cotton genome sequencing efforts, population studies, and functional genomics, to provide insights into the mechanisms shaping abiotic and biotic stress tolerance, plant architecture, seed oil content, and fiber development. We also suggest the application of novel technologies and strategies to facilitate genome-based crop breeding. Explosive growth in the amount of novel genomic data, identified genes, gene modules, and pathways is now enabling researchers to utilize multidisciplinary genomics-enabled breeding strategies to cultivate “super cotton”, synergistically improving multiple traits. These strategies must rise to meet urgent demands for a sustainable cotton industry.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(11)
  
bZIP71 delays flowering by suppressing Ehd1 expression in rice
Xiufeng Li, Xiaojie Tian, Mingliang He, Xinxin Liu, Zhiyong Li, Jiaqi Tang, Enyang Mei, Min Xu, Yingxiang Liu, Zhenyu Wang, Qingjie Guan, Wei Meng, Jun Fang, Jian Zhang and Qingyun Bu
J Integr Plant Biol 2022, 64 (7): 1352-1363.  
DOI: 10.1111/jipb.13275
Abstract (Browse 494)  |   Save

Flowering time is a fundamental factor determining the global distribution and final yield of rice (Oryza sativa). Although diverse flowering time genes have been reported in this crop, the transcriptional regulation of its key flowering genes are poorly understood. Here, we report that a basic leucine zipper transcription factor, bZIP71, functions as a flowering repressor. The overexpression of bZIP71 delays flowering, while the bzip71 mutant flowers early in both long-day and short-day conditions. A genetic analysis showed that the regulation of flowering by bZIP71 might be independent of Heading date 2 (Hd2), Hd4, and Hd5. Importantly, bZIP71 directly associates with the Early heading date 1 (Ehd1) promoter and represses its transcription, and genetically the function of bZIP71 is impaired in the ehd1 mutant. Moreover, bZIP71 interacts with major components of polycomb repressive complex 2 (PRC2), SET domain group protein 711 (SDG711), and Fertilization independent endosperm 2 (FIE2), through which bZIP71 regulates the H3K27me3 level of Ehd1. Taken together, we present a transcriptional regulatory mechanism in which bZIP71 enhances the H3K27me3 level of Ehd1 and transcriptionally represses its expression, which not only offers a novel insight into a flowering pathway, but also provides a valuable putative target for the genetic engineering and breeding of elite rice cultivars.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(8)
  
GmFtsH25 overexpression increases soybean seed yield by enhancing photosynthesis and photosynthates
Li Wang, Yuming Yang, Zhongyi Yang, Wenlong Li, Dezhou Hu, Huilian Yu, Xiao Li, Hao Cheng, Guizhen Kan, Zhijun Che, Dan Zhang, Hengyou Zhang, Hui Wang, Fang Huang and Deyue Yu
J Integr Plant Biol 2023, 65 (4): 1026-1040.  
DOI: 10.1111/jipb.13405
Abstract (Browse 486)  |   Save
Increasing plant photosynthetic capacity is a promising approach to boost yields, but it is particularly challenging in C3 crops, such as soybean (Glycine max (L.) Merr.). Here, we identified GmFtsH25, encoding a member of the filamentation temperature‐sensitive protein H protease family, as a major gene involved in soybean photosynthesis, using linkage mapping and a genome‐wide association study. Overexpressing GmFtsH25 resulted in more grana thylakoid stacks in chloroplasts and increased photosynthetic efficiency and starch content, while knocking out GmFtsH25 produced the opposite phenotypes. GmFtsH25 interacted with photosystem I light harvesting complex 2 (GmLHCa2), and this interaction may contribute to the observed enhanced photosynthesis. GmFtsH25 overexpression lines had superior yield traits, such as yield per plant, compared to the wild type and knockout lines. Additionally, we identified an elite haplotype of GmFtsH25, generated by natural mutations, which appears to have been selected during soybean domestication. Our study sheds light on the molecular mechanism by which GmFtsH25 modulates photosynthesis and provides a promising strategy for improving the yields of soybean and other crops.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(4)
  
Cas9-targeted Nanopore sequencing rapidly elucidates the transposition preferences and DNA methylation profiles of mobile elements in plants
Pavel Merkulov, Sofya Gvaramiya, Maxim Dudnikov, Roman Komakhin, Murad Omarov, Alina Kocheshkova, Zakhar Konstantinov, Alexander Soloviev, Gennady Karlov, Mikhail Divashuk and Ilya Kirov
J Integr Plant Biol 2023, 65 (10): 2242-2261.  
DOI: 10.1111/jipb.13555
Abstract (Browse 453)  |   Save
Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9-targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ (EVD) retrotransposon in wild-type Arabidopsis thaliana and rapidly obtained up to 40×sequence coverage. Analysis of hemizygous T-DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 (decrease in DNA methylation 1) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs. Finally, we detected hypomethylation of novel somatic insertions for two ONSENs. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T-DNA insertion mutants and transgenic plants.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
GmPIN1-mediated auxin asymmetry regulates leaf petiole angle and plant architecture in soybean
Zhongqin Zhang, Le Gao, Meiyu Ke, Zhen Gao, Tianli Tu, Laimei Huang, Jiaomei Chen, Yuefeng Guan, Xi Huang and Xu Chen
J Integr Plant Biol 2022, 64 (7): 1325-1338.  
doi: 10.1111/jipb.13269
Abstract (Browse 450)  |   Save

Crop breeding during the Green Revolution resulted in high yields largely due to the creation of plants with semi-dwarf architectures that could tolerate high-density planting. Although semi-dwarf varieties have been developed in rice, wheat and maize, none was reported in soybean (Glycine max), and few genes controlling plant architecture have been characterized in soybean. Here, we demonstrate that the auxin efflux transporter PINFORMED1 (GmPIN1), which determines polar auxin transport, regulates the leaf petiole angle in soybean. CRISPR-Cas9-induced Gmpin1abc and Gmpin1bc multiple mutants displayed a compact architecture with a smaller petiole angle than wild-type plants. GmPIN1 transcripts and auxin were distributed asymmetrically in the petiole base, with high levels of GmPIN1a/c transcript and auxin in the lower cells, which resulted in asymmetric cell expansion. By contrast, the (iso)flavonoid content was greater in the upper petiole cells than in the lower cells. Our results suggest that (iso)flavonoids inhibit GmPIN1a/c expression to regulate the petiole angle. Overall, our study demonstrates that a signal cascade that integrates (iso)flavonoid biosynthesis, GmPIN1a/c expression, auxin accumulation, and cell expansion in an asymmetric manner creates a desirable petiole curvature in soybean. This study provides a genetic resource for improving soybean plant architecture.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(16)
  
Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles
Zuo‐Ping Wang, Zhong‐Bao Zhang, Deng‐Yu Zheng, Tong‐Tong Zhang, Xiang‐Long Li, Chun Zhang, Rong Yu, Jian‐Hua Wei and Zhong‐Yi Wu
J Integr Plant Biol 2022, 64 (6): 1145-1156.  
doi: 10.1111/jipb.13263
Abstract (Browse 449)  |   Save

Current gene delivery methods for maize are limited to specific genotypes and depend on time-consuming and labor-intensive tissue culture techniques. Here, we report a new method to transfect maize that is culture-free and genotype independent. To enhance efficiency of DNA entry and maintain high pollen viability of 32%-55%, transfection was performed at cool temperature using pollen pretreated to open the germination aperture (40%–55%). Magnetic nanoparticles (MNPs) coated with DNA encoding either red fluorescent protein (RFP), β-glucuronidase gene (GUS), enhanced green fluorescent protein (EGFP) or bialaphos resistance (bar) was delivered into pollen grains, and female florets of maize inbred lines were pollinated. Red fluorescence was detected in 22% transfected pollen grains, and GUS stained 55% embryos at 18 d after pollination. Green fluorescence was detected in both silk filaments and immature kernels. The T1 generation of six inbred lines showed considerable EGFP or GUS transcripts (29%–74%) quantitated by polymerase chain reaction, and 5%–16% of the T1 seedlings showed immunologically active EGFP or GUS protein. Moreover, 1.41% of the bar transfected T1 plants were glufosinate resistant, and heritable bar gene was integrated into the maize genome effectively as verified by DNA hybridization. These results demonstrate that exogenous DNA could be delivered efficiently into elite maize inbred lines recalcitrant to tissue culture-mediated transformation and expressed normally through our genotype-independent pollen transfection system.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(20)
  
The basic helix-loop-helix transcription factor gene, OsbHLH38, plays a key role in controlling rice salt tolerance
Fengping Du, Yinxiao Wang, Juan Wang, Yingbo Li, Yue Zhang, Xiuqin Zhao, Jianlong Xu, Zhikang Li, Tianyong Zhao, Wensheng Wang and Binying Fu
J Integr Plant Biol 2023, 65 (8): 1859-1873.  
doi: 10.1111/jipb.13489
Abstract (Browse 418)  |   Save
The plant hormone abscisic acid (ABA) is crucial for plant seed germination and abiotic stress tolerance. However, the association between ABA sensitivity and plant abiotic stress tolerance remains largely unknown. In this study, 436 rice accessions were assessed for their sensitivity to ABA during seed germination. The considerable diversity in ABA sensitivity among rice germplasm accessions was primarily reflected by the differentiation between the Xian (indica) and Geng (japonica) subspecies and between the upland-Geng and lowland-Geng ecotypes. The upland-Geng accessions were most sensitive to ABA. Genome-wide association analyses identified four major quantitative trait loci containing 21 candidate genes associated with ABA sensitivity of which a basic helix-loop-helix transcription factor gene, OsbHLH38, was the most important for ABA sensitivity. Comprehensive functional analyses using knockout and overexpression transgenic lines revealed that OsbHLH38 expression was responsive to multiple abiotic stresses. Overexpression of OsbHLH38 increased seedling salt tolerance, while knockout of OsbHLH38 increased sensitivity to salt stress. A salt-responsive transcription factor, OsDREB2A, interacted with OsbHLH38 and was directly regulated by OsbHLH38. Moreover, OsbHLH38 affected rice abiotic stress tolerance by mediating the expression of a large set of transporter genes of phytohormones, transcription factor genes, and many downstream genes with diverse functions, including photosynthesis, redox homeostasis, and abiotic stress responsiveness. These results demonstrated that OsbHLH38 is a key regulator in plant abiotic stress tolerance.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(2)
  
Simple method for transformation and gene editing in medicinal plants
Xuesong Cao, Hongtao Xie, Minglei Song, Lianghui Zhao, Hailiang Liu, Guofu Li and Jian‐Kang Zhu
J Integr Plant Biol 2024, 66 (1): 17-19.  
doi: 10.1111/jipb.13593
Abstract (Browse 402)  |   Save
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
  
Exploring key developmental phases and phase-specific genes across the entirety of anther development in maize
Yingjia Han, Mingjian Hu, Xuxu Ma, Ge Yan, Chunyu Wang, Siqi Jiang, Jinsheng Lai and Mei Zhang
J Integr Plant Biol 2022, 64 (7): 1394-1410.  
DOI: 10.1111/jipb.13276
Abstract (Browse 397)  |   Save

Anther development from stamen primordium to pollen dispersal is complex and essential to sexual reproduction. How this highly dynamic and complex developmental process is controlled genetically is not well understood, especially for genes involved in specific key developmental phases. Here we generated RNA sequencing libraries spanning 10 key stages across the entirety of anther development in maize (Zea mays). Global transcriptome analyses revealed distinct phases of cell division and expansion, meiosis, pollen maturation, and mature pollen, for which we detected 50, 245, 42, and 414 phase-specific marker genes, respectively. Phase-specific transcription factor genes were significantly enriched in the phase of meiosis. The phase-specific expression of these marker genes was highly conserved among the maize lines Chang7-2 and W23, indicating they might have important roles in anther development. We explored a desiccation-related protein gene, ZmDRP1, which was exclusively expressed in the tapetum from the tetrad to the uninucleate microspore stage, by generating knockout mutants. Notably, mutants in ZmDRP1 were completely male-sterile, with abnormal Ubisch bodies and defective pollen exine. Our work provides a glimpse into the gene expression dynamics and a valuable resource for exploring the roles of key phase-specific genes that regulate anther development.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(4)
  
Efficient genotype-independent cotton genetic transformation and genome editing
Xiaoyang Ge, Jieting Xu, Zhaoen Yang, Xiaofeng Yang, Ye Wang, Yanli Chen, Peng Wang and Fuguang Li
J Integr Plant Biol 2023, 65 (4): 907-917.  
doi: 10.1111/jipb.13427
Abstract (Browse 395)  |   Save
Cotton (Gossypium spp.) is one of the most important fiber crops worldwide. In the last two decades, transgenesis and genome editing have played important roles in cotton improvement. However, genotype dependence is one of the key bottlenecks in generating transgenic and gene‐edited cotton plants through either particle bombardment or Agrobacterium‐mediated transformation. Here, we developed a shoot apical meristem (SAM) cell‐ mediated transformation system (SAMT) that allowed the transformation of recalcitrant cotton genotypes including widely grown upland cotton (Gossypium hirsutum), Sea island cotton (Gossypium barbadense), and Asiatic cotton (Gossypium arboreum). Through SAMT, we successfully introduced two foreign genes, GFP and RUBY, into SAM cells of some recalcitrant cotton genotypes. Within 2–3 months, transgenic adventitious shoots generated from the axillary meristem zone could be recovered and grown into whole cotton plants. The GFP fluorescent signal and betalain accumulation could be observed in various tissues in GFP‐ and RUBY‐positive plants, as well as in their progenies, indicating that the transgenes were stably integrated into the genome and transmitted to the next generation. Furthermore, using SAMT, we successfully generated edited cotton plants with inheritable targeted mutagenesis in the GhPGF and GhRCD1 genes through CRISPR/Cas9‐mediated genome editing. In summary, the established SAMT transformation system here in this study bypasses the embryogenesis process during tissue culture in a conventional transformation procedure and significantly accelerates the generation of transgenic and gene‐edited plants for genetic improvement of recalcitrant cotton varieties.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(12)
  
Ascorbate peroxidase 1 confers resistance to southern corn leaf blight in maize
Jinghua Zhang, Xingmeng Jia, Guan‐Feng Wang, Shijun Ma, Shunxi Wang, Qin Yang, Xueyan Chen, Yuqian Zhang, Yajing Lyu, Xiaoxu Wang, Jiawei Shi, Yangtao Zhao, Yanhui Chen and Liuji Wu
J Integr Plant Biol 2022, 64 (6): 1196-1211.  
DOI: 10.1111/jipb.13254
Abstract (Browse 391)  |   Save

Southern corn leaf blight (SCLB), caused by Bipolaris maydis, is one of the most devastating diseases affecting maize production. However, only one SLCB resistance gene, conferring partial resistance, is currently known, underscoring the importance of isolating new SCLB resistance-related genes. Here, we performed a comparative proteomic analysis and identified 258 proteins showing differential abundance during the maize response to B. maydis. These proteins included an ascorbate peroxidase (Zea mays ascorbate peroxidase 1 (ZmAPX1)) encoded by a gene located within the mapping interval of a previously identified quantitative trait locus associated with SCLB resistance. ZmAPX1 overexpression resulted in lower H2O2 accumulation and enhanced resistance against B. maydis. Jasmonic acid (JA) contents and transcript levels for JA biosynthesis and responsive genes increased in ZmAPX1-overexpressing plants infected with B. maydis, whereas Zmapx1 mutants showed the opposite effects. We further determined that low levels of H2O2 are accompanied by an accumulation of JA that enhances SCLB resistance. These results demonstrate that ZmAPX1 positively regulates SCLB resistance by decreasing H2O2 accumulation and activating the JA-mediated defense signaling pathway. This study identified ZmAPX1 as a potentially useful gene for increasing SCLB resistance. Furthermore, the generated data may be relevant for clarifying the functions of plant APXs.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(10)
  
The divergence of brassinosteroid sensitivity between rice subspecies involves natural variation conferring altered internal auto-binding of OsBSK2
Wenchao Yin, Lulu Li, Zhikun Yu, Fan Zhang, Dapu Liu, Hongkai Wu, Mei Niu, Wenjing Meng, Xiaoxing Zhang, Nana Dong, Yanzhao Yang, Jihong Liu, Yongqiang Liu, Guoxia Zhang, Jianlong Xu, Shimei Wang, Chengcai Chu, Qian Qian and Hongning Tong
J Integr Plant Biol 2022, 64 (8): 1614-1630.  
doi: 10.1111/jipb.13322
Abstract (Browse 388)  |   Save

Japonica/geng and indica/xian are two major rice (Oryza sativa) subspecies with multiple divergent traits, but how these traits are related and interact within each subspecies remains elusive. Brassinosteroids (BRs) are a class of steroid phytohormones that modulate many important agronomic traits in rice. Here, using different physiological assays, we revealed that japonica rice exhibits an overall lower BR sensitivity than indica. Extensive screening of BR signaling genes led to the identification of a set of genes distributed throughout the primary BR signaling pathway with divergent polymorphisms. Among these, we demonstrate that the C38/T variant in BR Signaling Kinase2 (OsBSK2), causing the amino acid change P13L, plays a central role in mediating differential BR signaling in japonica and indica rice. OsBSK2L13 in indica plays a greater role in BR signaling than OsBSK2P13 in japonica by affecting the auto-binding and protein accumulation of OsBSK2. Finally, we determined that OsBSK2 is involved in a number of divergent traits in japonica relative to indica rice, including grain shape, tiller number, cold adaptation, and nitrogen-use efficiency. Our study suggests that the natural variation in OsBSK2 plays a key role in the divergence of BR signaling, which underlies multiple divergent traits between japonica and indica.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(3)
  
TaTIP41 and TaTAP46 positively regulate drought tolerance in wheat by inhibiting PP2A activity
Jianhui Ma, Yuke Geng, Hong Liu, Mengqi Zhang, Shujuan Liu, Chenyang Hao, Jian Hou, Youfu Zhang, Daijing Zhang, Weijun Zhang, Xueyong Zhang and Tian Li
J Integr Plant Biol 2023, 65 (9): 2056-2070.  
DOI: 10.1111/jipb.13542
Abstract (Browse 383)  |   Save
Drought is a major environmental stress limiting global wheat (Triticum aestivum) production. Exploring drought tolerance genes is important for improving drought adaptation in this crop. Here, we cloned and characterized TaTIP41, a novel drought tolerance gene in wheat. TaTIP41 is a putative conserved component of target of rapamycin (TOR) signaling, and the TaTIP41 homoeologs were expressed in response to drought stress and abscisic acid (ABA). The overexpression of TaTIP41 enhanced drought tolerance and the ABA response, including ABA-induced stomatal closure, while its downregulation using RNA interference (RNAi) had the opposite effect. Furthermore, TaTIP41 physically interacted with TaTAP46, another conserved component of TOR signaling. Like TaTIP41, TaTAP46 positively regulated drought tolerance. Furthermore, TaTIP41 and TaTAP46 interacted with type-2A protein phosphatase (PP2A) catalytic subunits, such as TaPP2A-2, and inhibited their enzymatic activities. Silencing TaPP2A-2 improved drought tolerance in wheat. Together, our findings provide new insights into the roles of TaTIP41 and TaTAP46 in the drought tolerance and ABA response in wheat, and their potential application in improving wheat environmental adaptability.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
From molecular basics to agronomic benefits: Insights into noncoding RNA-mediated gene regulation in plants
Yuqiu Wang, Xing Wang Deng and Danmeng Zhu
J Integr Plant Biol 2022, 64 (12): 2290-2308.  
doi: 10.1111/jipb.13420
Abstract (Browse 380)  |   Save

The development of plants is largely dependent on their growth environment. To better adapt to a particular habitat, plants have evolved various subtle regulatory mechanisms for altering gene expression. Non coding RNAs (ncRNAs) constitute a major portion of the transcriptomes of eukaryotes. Various ncRNAs have been recognized as important regulators of the expression of genes involved in essential biological processes throughout the whole life cycles of plants. In this review, we summarize the current understanding of the biogenesis and contributions of small nucle olar RNA (snoRNA)- and regulatory long non coding RNA (lncRNA)-mediated gene regulation in plant development and environmental responses. Many regulatory ncRNAs appear to be associated with increased yield, quality and disease resistance of various species and cultivars. These ncRNAs may potentially be used as genetic resources for improving agronomic traits and for molecular breeding. The challenges in understanding plant ncRNA biology and the possibilities to make better use of these valuable gene resources in the future are discussed in this review.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(4)
  
BAK1 plays contrasting roles in regulating abscisic acid-induced stomatal closure and abscisic acid-inhibited primary root growth in Arabidopsis
Jinping Deng, Lingyao Kong, Yinhua Zhu, Dan Pei, Xuexue Chen, Yu Wang, Junsheng Qi, Chunpeng Song, Shuhua Yang and Zhizhong Gong
J Integr Plant Biol 2022, 64 (6): 1264-1280.  
DOI: 10.1111/jipb.13257
Abstract (Browse 380)  |   Save

The mechanisms that balance plant growth and stress responses are poorly understood, but they appear to involve abscisic acid (ABA) signaling mediated by protein kinases. Here, to explore these mechanisms, we examined the responses of Arabidopsis thaliana protein kinase mutants to ABA treatment. We found that mutants of BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) were hypersensitive to the effects of ABA on both seed germination and primary root growth. The kinase OPEN STOMATA 1 (OST1) was more highly activated by ABA in bak1 mutant than the wild type. BAK1 was not activated by ABA treatment in the dominant negative mutant abi1-1 or the pyr1 pyl4 pyl5 pyl8 quadruple mutant, but it was more highly activated by this treatment in the abi1-2 abi2-2 hab1-1 loss-of-function triple mutant than the wild type. BAK1 phosphorylates OST1 T146 and inhibits its activity. Genetic analyses suggested that BAK1 acts at or upstream of core components in the ABA signaling pathway, including PYLs, PP2Cs, and SnRK2s, during seed germination and primary root growth. Although the upstream brassinosteroid (BR) signaling components BAK1 and BR INSENSITIVE 1 (BRI1) positively regulate ABA-induced stomatal closure, mutations affecting downstream components of BR signaling, including BRASSINOSTEROID-SIGNALING KINASEs (BSKs) and BRASSINOSTEROID-INSENSITIVE 2 (BIN2), did not affect ABA-mediated stomatal movement. Thus, our study uncovered an important role of BAK1 in negatively regulating ABA signaling during seed germination and primary root growth, but positively modulating ABA-induced stomatal closure, thus optimizing the plant growth under drought stress.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(8)
  
GmJAZ3 interacts with GmRR18a and GmMYC2a to regulate seed traits in soybean
Yang Hu, Yue Liu, Jian‐Jun Tao, Long Lu, Zhi‐Hao Jiang, Jun‐Jie Wei, Chun‐Mei Wu, Cui‐Cui Yin, Wei Li, Ying‐Dong Bi, Yong‐Cai Lai, Wei Wei, Wan‐Ke Zhang, Shou‐Yi Chen and Jin‐Song Zhang
J Integr Plant Biol 2023, 65 (8): 1983-2000.  
doi: 10.1111/jipb.13494
Abstract (Browse 373)  |   Save
Seed weight is usually associated with seed size and is one of the important agronomic traits that determine yield. Understanding of seed weight control is limited, especially in soybean plants. Here we show that Glycine max JASMONATE-ZIM DOMAIN 3 (GmJAZ3), a gene identified through gene co-expression network analysis, regulates seed-related traits in soybean. Overexpression of GmJAZ3 promotes seed size/weight and other organ sizes in stable transgenic soybean plants likely by increasing cell proliferation. GmJAZ3 interacted with both G. max RESPONSE REGULATOR 18a (GmRR18a) and GmMYC2a to inhibit their transcriptional activation of cytokinin oxidase gene G. max CYTOKININ OXIDASE 3-4 (GmCKX3-4), which usually affects seed traits. Meanwhile, the GmRR18a binds to the promoter of GmMYC2a and activates GmMYC2a gene expression. In GmJAZ3-overexpressing soybean seeds, the protein contents were increased while the fatty acid contents were reduced compared to those in the control seeds, indicating that the GmJAZ3 affects seed size/weight and compositions. Natural variation in JAZ3 promoter region was further analyzed and Hap3 promoter correlates with higher promoter activity, higher gene expression and higher seed weight. The Hap3 promoter may be selected and fixed during soybean domestication. JAZ3 orthologs from other plants/crops may also control seed size and weight. Taken together, our study reveals a novel molecular module GmJAZ3-GmRR18a/GmMYC2a-GmCKXs for seed size and weight control, providing promising targets during soybean molecular breeding for better seed traits.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(3)
  
Cas12a-based on-site, rapid detection of genetically modified crops
Zhiqiang Duan, Xiaoliang Yang, Xingkun Ji, Ying Chen, Xiaomu Niu, Anping Guo, Jian‐Kang Zhu, Feng Li, Zhaobo Lang and Hui Zhao
J Integr Plant Biol 2022, 64 (10): 1856-1859.  
doi: 10.1111/jipb.13342
Abstract (Browse 353)  |   Save
A CRISPR/LbCas12a-based nucleic acid detection method that uses crude leaf extracts as samples and is rapid (≤40 min for a full run) and highly sensitive (0.01%) can be used to monitor genetically modified organisms in the field.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(2)
  
A bZIP transcription factor (CiFD) regulates drought- and low-temperature-induced flowering by alternative splicing in citrus
Li-Xia Ye, Yan-Mei Wu, Jin-Xia Zhang, Jin-Xin Zhang, Huan Zhou, Ren-Fang Zeng, Wei-Xuan Zheng, Mei-Qi Qiu, Jing-Jing Zhou, Zong-Zhou Xie, Chun-Gen Hu and Jin-Zhi Zhang
J Integr Plant Biol 2023, 65 (3): 674-691.  
DOI: 10.1111/jipb.13390
Abstract (Browse 352)  |   Save
Drought and low temperature are two key environmental factors that induce adult citrus flowering. However, the underlying regulation mechanism is poorly understood. The bZIP transcription factor FD is a key component of the florigen activation complex (FAC) which is composed of FLOWERING LOCUS T (FT), FD, and 14-3-3 proteins. In this study, isolation and characterization of CiFD in citrus found that there was alternative splicing (AS) of CiFD, forming two different proteins (CiFDα and CiFDβ). Further investigation found that their expression patterns were similar in different tissues of citrus, but the subcellular localization and transcriptional activity were different. Overexpression of the CiFD DNA sequence (CiFD-DNA), CiFDα, or CiFDβ in tobacco and citrus showed early flowering, and CiFD-DNA transgenic plants were the earliest, followed by CiFDβ and CiFDα. Interestingly, CiFDα and CiFDβ were induced by low temperature and drought, respectively. Further analysis showed that CiFDα can form a FAC complex with CiFT, Ci14-3-3, and then bind to the citrus APETALA1 (CiAP1) promoter and promote its expression. However, CiFDβ can directly bind to the CiAP1 promoter independently of CiFT and Ci14-3-3. These results showed that CiFDβ can form a more direct and simplified pathway that is independent of the FAC complex to regulate drought-induced flowering through AS. In addition, a bHLH transcription factor (CibHLH96) binds to CiFD promoter and promotes the expression of CiFD under drought condition. Transgenic analysis found that CibHLH96 can promote flowering in transgenic tobacco. These results suggest that CiFD is involved in drought- and low-temperature-induced citrus flowering through different regulatory patterns.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(5)
  
OsCPL3 is involved in brassinosteroid signaling by regulating OsGSK2 stability
Luping Gong, Shenghao Liao, Wen Duan, Yongqiang Liu, Dongmei Zhu, Xiaosheng Zhou, Baoping Xue, Chengcai Chu and Yun‐Kuan Liang
J Integr Plant Biol 2022, 64 (8): 1560-1574.  
DOI: 10.1111/jipb.13311
Abstract (Browse 348)  |   Save

Glycogen synthase kinase 3 (GSK3) proteins play key roles in brassinosteroid (BR) signaling during plant growth and development by phosphorylating various substrates. However, how GSK3 protein stability and activity are themselves modulated is not well understood. Here, we demonstrate in vitro and in vivo that C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 (OsCPL3), a member of the RNA Pol II CTD phosphatase-like family, physically interacts with OsGSK2 in rice (Oryza sativa). OsCPL3 expression was widely detected in various tissues and organs including roots, leaves and lamina joints, and was induced by exogenous BR treatment. OsCPL3 localized to the nucleus, where it dephosphorylated OsGSK2 at the Ser-222 and Thr-284 residues to modulate its protein turnover and kinase activity, in turn affecting the degradation of BRASSINAZOLE-RESISTANT 1 (BZR1) and BR signaling. Loss of OsCPL3 function resulted in higher OsGSK2 abundance and lower OsBZR1 levels, leading to decreased BR responsiveness and alterations in plant morphology including semi-dwarfism, leaf erectness and grain size, which are of fundamental importance to crop productivity. These results reveal a previously unrecognized role for OsCPL3 and add another layer of complexity to the tightly controlled BR signaling pathway in plants.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(4)
  
Ribonuclease H-like gene SMALL GRAIN2 regulates grain size in rice through brassinosteroid signaling pathway
Yunshuai Huang, Hui Dong, Changling Mou, Ping Wang, Qixian Hao, Min Zhang, Hongmin Wu, Fulin Zhang, Tengfei Ma, Rong Miao, Kai Fu, Yaping Chen, Ziyan Zhu, Cheng Chen, Qikai Tong, Zhuoran Wang, Shirong Zhou, Xi Liu, Shijia Liu, Yunlu Tian, Ling Jiang and Jianmin Wan
J Integr Plant Biol 2022, 64 (10): 1883-1900.  
DOI: 10.1111/jipb.13333
Abstract (Browse 336)  |   Save
Grain size is a key agronomic trait that determines the yield in plants. Regulation of grain size by brassinosteroids (BRs) in rice has been widely reported. However, the relationship between the BR signaling pathway and grain size still requires further study. Here, we isolated a rice mutant, named small grain2 (sg2), which displayed smaller grain and a semi-dwarf phenotype. The decreased grain size was caused by repressed cell expansion in spikelet hulls of the sg2 mutant. Using map-based cloning combined with a MutMap approach, we cloned SG2, which encodes a plant-specific protein with a ribonuclease H-like domain. SG2 is a positive regulator downstream of GLYCOGEN SYNTHASE KINASE2 (GSK2) in response to BR signaling, and its mutation causes insensitivity to exogenous BR treatment. Genetical and biochemical analysis showed that GSK2 interacts with and phosphorylates SG2. We further found that BRs enhance the accumulation of SG2 in the nucleus, and subcellular distribution of SG2 is regulated by GSK2 kinase activity. In addition, Oryza sativa OVATE family protein 19 (OsOFP19), a negative regulator of grain shape, interacts with SG2 and plays an antagonistic role with SG2 in controlling gene expression and grain size. Our results indicated that SG2 is a new component of GSK2-related BR signaling response and regulates grain size by interacting with OsOFP19.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(10)
  
Transcriptional regulation of fleshy fruit texture
Yanna Shi, Bai‐Jun Li, Guanqing Su, Mengxue Zhang, Donald Grierson and Kun‐Song Chen
J Integr Plant Biol 2022, 64 (9): 1649-1672.  
doi: 10.1111/jipb.13316
Abstract (Browse 336)  |   Save

Fleshy fruit texture is a critically important quality characteristic of ripe fruit. Softening is an irreversible process which operates in most fleshy fruits during ripening which, together with changes in color and taste, contributes to improvements in mouthfeel and general attractiveness. Softening results mainly from the expression of genes encoding enzymes responsible for cell wall modifications but starch degradation and high levels of flavonoids can also contribute to texture change. Some fleshy fruit undergo lignification during development and post-harvest, which negatively affects eating quality. Excessive softening can also lead to physical damage and infection, particularly during transport and storage which causes severe supply chain losses. Many transcription factors (TFs) that regulate fruit texture by controlling the expression of genes involved in cell wall and starch metabolism have been characterized. Some TFs directly regulate cell wall targets, while others act as part of a broader regulatory program governing several aspects of the ripening process. In this review, we focus on advances in our understanding of the transcriptional regulatory mechanisms governing fruit textural change during fruit development, ripening and post-harvest. Potential targets for breeding and future research directions for the control of texture and quality improvement are discussed.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(27)
  
A prolific and robust whole-genome genotyping method using PCR amplification via primer-template mismatched annealing
Sheng Zhao, Cuicui Zhang, Liqun Wang, Minxuan Luo, Peng Zhang, Yue Wang, Waqar Afzal Malik, Yue Wang, Peng Chen, Xianjin Qiu, Chongrong Wang, Hong Lu, Yong Xiang, Yuwen Liu, Jue Ruan, Qian Qian, Haijian Zhi and Yuxiao Chang
J Integr Plant Biol 2023, 65 (3): 633-645.  
doi: 10.1111/jipb.13395
Abstract (Browse 330)  |   Save
Whole-genome genotyping methods are important for breeding. However, it has been challenging to develop a robust method for simultaneous foreground and background genotyping that can easily be adapted to different genes and species. In our study, we accidently discovered that in adapter ligation-mediated PCR, the amplification by primer-template mismatched annealing (PTMA) along the genome could generate thousands of stable PCR products. Based on this observation, we consequently developed a novel method for simultaneous foreground and background integrated genotyping by sequencing (FBI-seq) using one specific primer, in which foreground genotyping is performed by primer-template perfect annealing (PTPA), while background genotyping employs PTMA. Unlike DNA arrays, multiple PCR, or genome target enrichments, FBI-seq requires little preliminary work for primer design and synthesis, and it is easily adaptable to different foreground genes and species. FBI-seq therefore provides a prolific, robust, and accurate method for simultaneous foreground and background genotyping to facilitate breeding in the post-genomics era.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
A cost-effective tsCUT&Tag method for profiling transcription factor binding landscape
Leiming Wu, Zi Luo, Yanni Shi, Yizhe Jiang, Ruonan Li, Xinxin Miao, Fang Yang, Qing Li, Han Zhao, Jiquan Xue, Shutu Xu, Tifu Zhang and Lin Li
J Integr Plant Biol 2022, 64 (11): 2033-2038.  
doi: 10.1111/jipb.13354
Abstract (Browse 330)  |   Save

Knowledge of the transcription factor binding landscape (TFBL) is necessary to analyze gene regulatory networks for important agronomic traits. However, a low-cost and high-throughput in vivo chromatin profiling method is still lacking in plants. Here, we developed a transient and simplified cleavage under targets and tagmentation (tsCUT&Tag) that combines transient expression of transcription factor proteins in protoplasts with a simplified CUT&Tag without nucleus extraction. Our tsCUT&Tag method provided higher data quality and signal resolution with lower sequencing depth compared with traditional ChIP-seq. Furthermore, we developed a strategy combining tsCUT&Tag with machine learning, which has great potential for profiling the TFBL across plant development.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(8)
  
The Larix kaempferi genome reveals new insights into wood properties
Chao Sun, Yun‐Hui Xie, Zhen Li, Yan‐Jing Liu, Xiao‐Mei Sun, Jing‐Jing Li, Wei‐Peng Quan, Qing‐Yin Zeng, Yves Van de Peer and Shou‐Gong Zhang
J Integr Plant Biol 2022, 64 (7): 1364-1373.  
doi: 10.1111/jipb.13265
Abstract (Browse 326)  |   Save

Here, through single-molecule real-time sequencing, we present a high-quality genome sequence of the Japanese larch (Larix kaempferi), a conifer species with great value for wood production and ecological afforestation. The assembled genome is 10.97 Gb in size, harboring 45,828 protein-coding genes. Of the genome, 66.8% consists of repeat sequences, of which long terminal repeat retrotransposons are dominant and make up 69.86%. We find that tandem duplications have been responsible for the expansion of genes involved in transcriptional regulation and stress responses, unveiling their crucial roles in adaptive evolution. Population transcriptome analysis reveals that lignin content in L. kaempferi is mainly determined by the process of monolignol polymerization. The expression values of six genes (LkCOMT7, LkCOMT8, LkLAC23, LkLAC102, LkPRX148, and LkPRX166) have significantly positive correlations with lignin content. These results indicated that the increased expression of these six genes might be responsible for the high lignin content of the larches' wood. Overall, this study provides new genome resources for investigating the evolution and biological function of conifer trees, and also offers new insights into wood properties of larches.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(12)
  
HY5-HDA9 orchestrates the transcription of HsfA2 to modulate salt stress response in Arabidopsis
Jiaheng Yang, Xiao Qu, Tao Li, Yixiang Gao, Haonan Du, Lanjie Zheng, Manchun Ji, Paifeng Zhang, Yan Zhang, Jinxin Hu, Liangyu Liu, Zefu Lu, Zijian Yang, Huiyong Zhang, Jianping Yang, Yongqing Jiao, Xu Zheng
J Integr Plant Biol 2023, 65 (1): 45-63.  
doi: 10.1111/jipb.13372
Abstract (Browse 322)  |   Save
Integration of light signaling and diverse abiotic stress responses contribute to plant survival in a changing environment. Some reports have indicated that light signals contribute a plant's ability to deal with heat, cold, and stress. However, the molecular link between light signaling and the salt-response pathways remains unclear. We demonstrate here that increasing light intensity elevates the salt stress tolerance of plants. Depletion of HY5, a key component of light signaling, causes Arabidopsis thaliana to become salinity sensitive. Interestingly, the small heat shock protein (sHsp) family genes are upregulated in hy5-215 mutant plants, and HsfA2 is commonly involved in the regulation of these sHsps. We found that HY5 directly binds to the G-box motifs in the HsfA2 promoter, with the cooperation of HISTONE DEACETYLASE 9 (HDA9), to repress its expression. Furthermore, the accumulation of HDA9 and the interaction between HY5 and HDA9 are significantly enhanced by salt stress. On the contrary, high temperature triggers HY5 and HDA9 degradation, which leads to dissociation of HY5-HDA9 from the HsfA2 promoter, thereby reducing salt tolerance. Under salt and heat stress conditions, fine tuning of protein accumulation and an interaction between HY5 and HDA9 regulate HsfA2 expression. This implies that HY5, HDA9, and HsfA2 play important roles in the integration of light signaling with salt stress and heat shock response.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(6)
  
Natural variation in the NAC transcription factor NONRIPENING contributes to melon fruit ripening
Jinfang Wang, Shouwei Tian, Yongtao Yu, Yi Ren, Shaogui Guo, Jie Zhang, Maoying Li, Haiying Zhang, Guoyi Gong, Min Wang and Yong Xu
J Integr Plant Biol 2022, 64 (7): 1448-1461.  
DOI: 10.1111/jipb.13278
Abstract (Browse 320)  |   Save

The NAC transcription factor NONRIPENING (NOR) is a master regulator of climacteric fruit ripening. Melon (Cucumis melo L.) has climacteric and non-climacteric fruit ripening varieties and is an ideal model to study fruit ripening. Two natural CmNAC-NOR variants, the climacteric haplotype CmNAC-NORS,N and the non-climacteric haplotype CmNAC-NORA,S, have effects on fruit ripening; however, their regulatory mechanisms have not been elucidated. Here, we report that a natural mutation in the transcriptional activation domain of CmNAC-NORS,N contributes to climacteric melon fruit ripening. CmNAC-NOR knockout in the climacteric-type melon cultivar “BYJH” completely inhibited fruit ripening, while ripening was delayed by 5–8 d in heterozygous cmnac-nor mutant fruits. CmNAC-NOR directly activated carotenoid, ethylene, and abscisic acid biosynthetic genes to promote fruit coloration and ripening. Furthermore, CmNAC-NOR mediated the transcription of the “CmNAC-NOR-CmNAC73-CmCWINV2” module to enhance flesh sweetness. The transcriptional activation activity of the climacteric haplotype CmNAC-NORS,N on these target genes was significantly higher than that of the non-climacteric haplotype CmNAC-NORA,S. Moreover, CmNAC-NORS,N complementation fully rescued the non-ripening phenotype of the tomato (Solanum lycopersicum) cr-nor mutant, while CmNAC-NORA,S did not. Our results provide insight into the molecular mechanism of climacteric and non-climacteric fruit ripening in melon.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(9)
  
Vitamin B1 THIAMIN REQUIRING1 synthase mediates the maintenance of chloroplast function by regulating sugar and fatty acid metabolism in rice
Yanshen Nie, Li Yu, Lianlian Mao, Wenxuan Zou, Xiufeng Zhang and Jie Zhao
J Integr Plant Biol 2022, 64 (8): 1575-1595.  
DOI: 10.1111/jipb.13283
Abstract (Browse 317)  |   Save

Vitamin B1 (VB1), including thiamin, thiamin monophosphate (TMP), and thiamin pyrophosphate (TPP), is an essential micronutrient for all living organisms. Nevertheless, the precise function of VB1 in rice remains unclear. Here, we described a VB1 auxotrophic mutant, chlorotic lethal seedling (cles) from the mutation of OsTH1, which displayed collapsed chloroplast membrane system and decreased pigment content. OsTH1 encoded a phosphomethylpyrimidine kinase/thiamin-phosphate pyrophosphorylase, and was expressed in various tissues, especially in seedlings, leaves, and young panicles. The VB1 content in cles was markedly reduced, despite an increase in the expression of VB1 synthesis genes. The decreased TPP content affected the tricarboxylic acid cycle, pentose phosphate pathway, and de novo fatty acid synthesis, leading to a reduction in fatty acids (C16:0 and C18:0) and sugars (sucrose and glucose) of cles. Additionally, irregular expression of chloroplast membrane synthesis genes led to membrane collapse. We also found that alternative splicing and translation allowed OsTH1 to be localized to both chloroplast and cytosol. Our study revealed that OsTH1 was an essential enzyme in VB1 biosynthesis and played crucial roles in seedling growth and development by participating in fatty acid and sugar metabolism, providing new perspectives on VB1 function in rice.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
Quantitative proteomics reveals redox-based functional regulation of photosynthesis under fluctuating light in plants
Qi Chen, Yixian Xiao, Yu Ming, Rong Peng, Jiliang Hu, Hong‐Bin Wang and Hong‐Lei Jin
J Integr Plant Biol 2022, 64 (11): 2168-2186.  
doi: 10.1111/jipb.13348
Abstract (Browse 314)  |   Save

Photosynthesis involves a series of redox reactions and is the major source of reactive oxygen species in plant cells. Fluctuating light (FL) levels, which occur commonly in natural environments, affect photosynthesis; however, little is known about the specific effects of FL on the redox regulation of photosynthesis. Here, we performed global quantitative mapping of the Arabidopsis thaliana cysteine thiol redox proteome under constant light and FL conditions. We identified 8857 redox-switched thiols in 4350 proteins, and 1501 proteins that are differentially modified depending on light conditions. Notably, proteins related to photosynthesis, especially photosystem I (PSI), are operational thiol-switching hotspots. Exposure of wild-type A. thaliana to FL resulted in decreased PSI abundance, stability, and activity. Interestingly, in response to PSI photodamage, more of the PSI assembly factor PSA3 dynamically switches to the reduced state. Furthermore, the Cys199 and Cys200 sites in PSA3 are necessary for its full function. Moreover, thioredoxin m (Trx m) proteins play roles in redox switching of PSA3, and are required for PSI activity and photosynthesis. This study thus reveals a mechanism for redox-based regulation of PSI under FL, and provides insight into the dynamic acclimation of photosynthesis in a changing environment.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(5)
  
Establishment of a dmp based maternal haploid induction system for polyploid Brassica napus and Nicotiana tabacum
Yu Zhong, Yuwen Wang, Baojian Chen, Jinchu Liu, Dong Wang, Mengran Li, Xiaolong Qi, Chenxu Liu, Kim Boutilier and Shaojiang Chen
J Integr Plant Biol 2022, 64 (6): 1281-1294.  
doi: 10.1111/jipb.13244
Abstract (Browse 313)  |   Save

Doubled haploid (DH) technology is used to obtain homozygous lines in a single generation, a technique that significantly accelerates the crop breeding trajectory. Traditionally, in vitro culture is used to generate DHs, but this technique is limited by species and genotype recalcitrance. In vivo haploid induction (HI) through seed is widely and efficiently used in maize and was recently extended to several other crops. Here we show that in vivo HI can be triggered by mutation of DMP maternal haploid inducer genes in allopolyploid (allotetraploid) Brassica napus and Nicotiana tabacum. We developed a pipeline for selection of DMP orthologs for clustered regularly interspaced palindromic repeats mutagenesis and demonstrated average amphihaploid induction rates of 2.4% and 1.2% in multiple B. napus and N. tabacum genotypes, respectively. These results further confirmed the HI ability of DMP gene in polyploid dicot crops. The DMP-HI system offers a novel DH technology to facilitate breeding in these crops. The success of this approach and the conservation of DMP genes in dicots suggest the broad applicability of this technique in other dicot crops.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(18)
  
Cultivated hawthorn (Crataegus pinnatifida var. major) genome sheds light on the evolution of Maleae (apple tribe)
Ticao Zhang, Qin Qiao, Xiao Du, Xiao Zhang, Yali Hou, Xin Wei, Chao Sun, Rengang Zhang, Quanzheng Yun, M. James C. Crabbe, Yves Van de Peer and Wenxuan Dong
J Integr Plant Biol 2022, 64 (8): 1487-1501.  
doi: 10.1111/jipb.13318
Abstract (Browse 310)  |   Save

Cultivated hawthorn (Crataegus pinnatifida var. major) is an important medicinal and edible plant with a long history of use for health protection in China. Herein, we provide a de novo chromosome-level genome sequence of the hawthorn cultivar “Qiu Jinxing.” We assembled an 823.41 Mb genome encoding 40 571 genes and further anchored the 779.24 Mb sequence into 17 pseudo-chromosomes, which account for 94.64% of the assembled genome. Phylogenomic analyses revealed that cultivated hawthorn diverged from other species within the Maleae (apple tribe) at approximately 35.4 Mya. Notably, genes involved in the flavonoid and triterpenoid biosynthetic pathways have been significantly amplified in the hawthorn genome. In addition, our results indicated that the Maleae share a unique ancient tetraploidization event; however, no recent independent whole-genome duplication event was specifically detected in hawthorn. The amplification of non-specific long terminal repeat retrotransposons contributed the most to the expansion of the hawthorn genome. Furthermore, we identified two paleo-sub-genomes in extant species of Maleae and found that these two sub-genomes showed different rearrangement mechanisms. We also reconstructed the ancestral chromosomes of Rosaceae and discussed two possible paleo-polyploid origin patterns (autopolyploidization or allopolyploidization) of Maleae. Overall, our study provides an improved context for understanding the evolution of Maleae species, and this new high-quality reference genome provides a useful resource for the horticultural improvement of hawthorn.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(8)
  
Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target
Yihao Yang, Ziyan Shen, Youguang Li, Chenda Xu, Han Xia, Hao Zhuang, Shengyuan Sun, Min Guo and Changjie Yan
J Integr Plant Biol 2022, 64 (10): 1860-1865.  
doi: 10.1111/jipb.13334
Abstract (Browse 306)  |   Save
Rice eating and cooking quality (ECQ) is a major concern of breeders and consumers, determining market competitiveness worldwide. Rice grain protein content (GPC) is negatively related to ECQ, making it possible to improve ECQ by manipulating GPC. However, GPC is genetically complex and sensitive to environmental conditions; therefore, little progress has been made in traditional breeding for ECQ. Here, we report that CRISPR/Cas9-mediated knockout of genes encoding the grain storage protein glutelin rapidly produced lines with downregulated GPC and improved ECQ. Our finding provides a new strategy for improving rice ECQ.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(5)
  
UBA domain protein SUF1 interacts with NatA-complex subunit NAA15 to regulate thermotolerance in Arabidopsis
Ze‐Ting Song, Xiao‐Jie Chen, Ling Luo, Feifei Yu, Jian‐Xiang Liu and Jia‐Jia Han
J Integr Plant Biol 2022, 64 (7): 1297-1302.  
doi: 10.1111/jipb.13273
Abstract (Browse 297)  |   Save
During recovery from heat stress, plants clear away the heat-stress-induced misfolded proteins through the ubiquitin-proteasome system (UPS). In the UPS, the recognition of substrate proteins by E3 ligase can be regulated by the N-terminal acetyltransferase A (NatA) complex. Here, we determined that Arabidopsis STRESS-RELATED UBIQUITIN-ASSOCIATED-DOMAIN PROTEIN FACTOR 1 (SUF1) interacts with the NatA complex core subunit NAA15 and positively regulates NAA15. The suf1 and naa15 mutants are sensitive to heat stress; the NatA substrate NSNC1 is stabilized in suf1 mutant plants during heat stress recovery. Therefore, SUF1 and its interactor NAA15 play important roles in basal thermotolerance in Arabidopsis.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida)
Chengpeng Wang, Yang Li, Na Wang, Qin Yu, Yonghong Li, Junping Gao, Xiaofeng Zhou and Nan Ma
J Integr Plant Biol 2023, 65 (4): 895-899.  
doi: 10.1111/jipb.13421
Abstract (Browse 294)  |   Save
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐related nuclease 9 (Cas9) system enables precise, simple editing of genes in many animals and plants. However, this system has not been applied to rose (Rosa hybrida) due to the genomic complexity and lack of an efficient transformation technology for this plant. Here, we established a platform for screening single‐guide RNAs (sgRNAs) with high editing efficiency for CRISPR/Cas9‐mediated gene editing in rose using suspension cells. We used the Arabidopsis thaliana U6‐29 promoter, which showed high activity for driving sgRNA expression, to modify the CRISPR/Cas9 system. We used our highly efficient optimized CRISPR/Cas9 system to successfully edit RhEIN2, encoding an indispensable component of the ethylene signaling pathway, resulting in ethylene insensitivity in rose. Our optimized CRISPR/Cas9 system provides a powerful toolbox for functional genomics, molecular breeding, and synthetic biology in rose.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(4)
  
Base editing-mediated targeted evolution of ACCase for herbicide-resistant rice mutants
Hongzhi Wang, Yuxin He, Yingying Wang, Zuren Li, Jiannan Hao, Yijiao Song, Mugui Wang and Jian‐Kang Zhu
J Integr Plant Biol 2022, 64 (11): 2029-2032.  
doi: 10.1111/jipb.13352
Abstract (Browse 292)  |   Save
Improved cytosine and adenine base editors and an efficient dual editor were applied in targeted evolution of ACETYL COA CARBOXYLASE in rice, resulting in the generation of dozens of herbicide-resistant mutations, at least three of which, W2125L, W2125Q and C2186H, have not been reported previously.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(6)
  
ANAC087 transcription factor positively regulates age-dependent leaf senescence through modulating the expression of multiple target genes in Arabidopsis
Qinqin Chen, Jingli Yan, Tiantian Tong, Peiyu Zhao, Shuangshuang Wang, Na Zhou, Xing Cui, Moyu Dai, Yuan‐Qing Jiang and Bo Yang
J Integr Plant Biol 2023, 65 (4): 967-984.  
DOI: 10.1111/jipb.13434
Abstract (Browse 292)  |   Save
Leaf senescence is the final stage of leaf development and appropriate onset and progression of leaf senescence are critical for reproductive success and fitness. Although great progress has been made in identifying key genes regulating leaf senescence and elucidating the underlining mechanisms in the model plant Arabidopsis, there is still a gap to understanding the complex regulatory network. In this study, we discovered that Arabidopsis ANAC087 transcription factor (TF) positively modulated leaf senescence. Expression of ANAC087 was induced in senescing leaves and the encoded protein acted as a transcriptional activator. Both constitutive and inducible overexpression lines of ANAC087 showed earlier senescence than control plants, whereas T‐DNA insertion mutation and dominant repression of the ANAC087 delayed senescence rate. A quantitative reverse transcription‐polymerase chain reaction (qRT‐ PCR) profiling showed that the expression of an array of senescence‐associated genes was upregulated in inducible ANAC087 overexpression plants including BFN1, NYE1, CEP1, RbohD, SAG13, SAG15, and VPEs, which are involved in programmed cell death (PCD), chlorophyll degradation and reactive oxygen species (ROS) accumulation. In addition, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation‐quantitative polymerase chain reaction (ChIP‐qPCR) assays demonstrated that ANAC087 directly bound to the canonical NAC recognition sequence (NACRS) motif in promoters of its target genes. Moreover, mutation of two representative target genes, BFN1 or NYE1 alleviated the senescence rate of ANAC087‐overexpression plants, suggesting their genetic regulatory relationship. Taken together, this study indicates that ANAC087 serves as an important regulator linking PCD, ROS, and chlorophyll degradation to leaf senescence.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(2)
  
Making small molecules in plants: A chassis for synthetic biology-based production of plant natural products
Xinyu Liu, Peijun Zhang, Qiao Zhao and Ancheng C. Huang
J Integr Plant Biol 2023, 65 (2): 417-443.  
doi: 10.1111/jipb.13330
Abstract (Browse 291)  |   Save
Plant natural products have been extensively exploited in food, medicine, flavor, cosmetic, renewable fuel, and other industrial sectors. Synthetic biology has recently emerged as a promising means for the cost-effective and sustainable production of natural products. Compared with engineering microbes for the production of plant natural products, the potential of plants as chassis for producing these compounds is underestimated, largely due to challenges encountered in engineering plants. Knowledge in plant engineering is instrumental for enabling the effective and efficient production of valuable phytochemicals in plants, and also paves the way for a more sustainable future agriculture. In this manuscript, we briefly recap the biosynthesis of plant natural products, focusing primarily on industrially important terpenoids, alkaloids, and phenylpropanoids. We further summarize the plant hosts and strategies that have been used to engineer the production of natural products. The challenges and opportunities of using plant synthetic biology to achieve rapid and scalable production of high-value plant natural products are also discussed.
References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(5)
  
Starch phosphorylase 2 is essential for cellular carbohydrate partitioning in maize
Yao Qin, Ziyi Xiao, Hailiang Zhao, Jing Wang, Yuanru Wang and Fazhan Qiu
J Integr Plant Biol 2022, 64 (9): 1755-1769.  
DOI: 10.1111/jipb.13328
Abstract (Browse 289)  |   Save

Carbohydrate partitioning is essential for plant growth and development, and its hindrance will result in excess accumulation of carbohydrates in source tissues. Most of the related mutants in maize (Zea mays L.) display impaired whole-plant sucrose transport, but other mechanisms affecting carbohydrate partitioning have seldom been reported. Here, we characterized chlorotic leaf3 (chl3), a recessive mutation causing leaf chlorosis with starch accumulation excessively in bundle sheath chloroplasts, suggesting that chl3 is defective in carbohydrate partitioning. Positional cloning revealed that the chl3 phenotype results from a frameshift mutation in ZmPHOH, which encodes starch phosphorylase 2. Two mutants in ZmPHOH exhibited the same phenotype as chl3, and both alleles failed to complement the chl3 mutant phenotype in an allelism test. Inactivation of ZmPHOH in chl3 leaves reduced the efficiency of transitory starch conversion, resulting in increased leaf starch contents and altered carbohydrate metabolism patterns. RNA-seq revealed the transcriptional downregulation of genes related to photosynthesis and carbohydrate metabolism in chl3 leaves compared to the wild type. Our results demonstrate that transitory starch remobilization is very important for cellular carbohydrate partitioning in maize, in which ZmPHOH plays an indispensable role.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(1)
  
Sdr4 dominates pre-harvest sprouting and facilitates adaptation to local climatic condition in Asian cultivated rice
Bo Zhao, Hui Zhang, Tianxiao Chen, Ling Ding, Liying Zhang, Xiali Ding, Jun Zhang, Qian Qian and Yong Xiang
J Integr Plant Biol 2022, 64 (6): 1246-1263.  
doi: 10.1111/jipb.13266
Abstract (Browse 289)  |   Save

Pre-harvest sprouting (PHS), which reduces grain yield and quality, is controlled by seed dormancy genes. Because few dormancy-related genes have been cloned, the genetic basis of seed dormancy in rice (Oryza sativa L.) remains unclear. Here, we performed a genome-wide association study and linkage mapping to dissect the genetic basis of seed dormancy in rice. Our findings suggest that Seed Dormancy4 (Sdr4), a central modulator of seed dormancy, integrates the abscisic acid and gibberellic acid signaling pathways at the transcriptional level. Haplotype analysis revealed that three Sdr4 alleles in rice cultivars already existed in ancestral Oryza rufipogon accessions. Furthermore, like the semi-dwarf 1 (SD1) and Rc loci, Sdr4 underwent selection during the domestication and improvement of Asian cultivated rice. The distribution frequency of the Sdr4-n allele in different locations in Asia is negatively associated with local annual temperature and precipitation. Finally, we developed functional molecular markers for Sdr4, SD1, and Rc for use in molecular breeding. Our results provide clues about the molecular basis of Sdr4-regulated seed dormancy. Moreover, these findings provide guidance for utilizing the favorable alleles of Sdr4 and Rc to synergistically boost PHS resistance, yield, and quality in modern rice varieties.

References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Cited: Web of Science(6)
PROMOTIONS
Scan with iPhone or iPad to view JIPB online
Scan using WeChat with your smartphone to view JIPB online
Follow us at @JIPBio on Twitter
Taobao QR code Weidian QR code

PUBLISHED BY

ACKNOWLEDGEMENTS

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22