J Integr Plant Biol. ›› 2006, Vol. 48 ›› Issue (5): 591-612.DOI: 10.1111/j.1744-7909.2006.00270.x

• Research Articles • Previous Articles    

Transcriptional Responses to Gibberellin and Abscisic Acid in Barley Aleurone

Kegui Chen and Yong-Qiang Charles An   

Abstract: Cereal aleurone has been established as a model system to investigate giberrellin (GA) and abscisic acid (ABA) responses. Using Barley 1 GeneChip, we examined the mRNA accumulation of over 22 000 genes in de-embryonated barley aleurone treated with GA and ABA. We observed that 1 328 genes had more than a threefold change in response to GA treatment, whereas 206 genes had a more than threefold change in response to ABA treatment. Interestingly, approximately 2.5-fold more genes were up-regulated than down-regulated by ABA. Eighty-three genes were differentially regulated by both GA and ABA. Most of the genes were subject to antagonistic regulation by ABA and GA, particularly for genes related to seed maturation and germination, such as genes encoding late embryogenesis abundant proteins and storage mobilization enzymes. This supports the antagonistic roles of GA and ABA in seed maturation and seed germination. Interestingly, we observed that a significant percentage of the genes were coordinately regulated by both GA and ABA. Some GA-responsive genes encoded proteins involved in ethylene, jasmonate, brassinosteroid and auxin metabolic and signaling transduction pathways, suggesting their potential interaction with the GA response. We also identified a group of transcription factor genes, such as MYB and Homeobox genes, that were differentially regulated by GA. In addition, a number of GA- and/or ABA-responsive genes encoded components potentially involved in GA and ABA signal transduction pathway. Overall, the present study provides a comprehensive and global view of transcript expression accompanying the GA and ABA response in barley aleurone and identifies a group of genes with potential regulatory functions in GA- and ABA-signaling pathways for future functional validation.(Author for correspondence.Tel: +1 608 358 8162; Fax: +1 608 890 0302; E-mail:ycan@wisc.edu)

Key words: abscisic acid, barley, gene regulation, gibberellin, microarray, signal transduction.

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22