Development
An R-loop is a three-stranded chromatin structure that consists of a displaced single strand of DNA and an RNA:DNA hybrid duplex, which was thought to be a rare by-product of transcription. However, recent genome-wide data have shown that R-loops are widespread and pervasive in a variety of genomes, and a growing body of experimental evidence indicates that R-loops have both beneficial and harmful effects on an organism. To maximize benefit and avoid harm, organisms have evolved several means by which they tightly regulate R-loop levels. Here, we summarize our current understanding of the biogenesis and effects of R-loops, the mechanisms that regulate them, and methods of R-loop profiling, reviewing recent research advances on R-loops in plants. Furthermore, we provide perspectives on future research directions for R-loop biology in plants, which might lead to a more comprehensive understanding of R-loop functions in plant genome regulation and contribute to future agricultural improvements.
Callus induction, which results in fate transition in plant cells, is considered as the first and key step for plant regeneration. This process can be stimulated in different tissues by a callus-inducing medium (CIM), which contains a high concentration of phytohormone auxin. Although a few key regulators for callus induction have been identified, the multiple aspects of the regulatory mechanism driven by high levels of auxin still need further investigation. Here, we find that high auxin induces callus through a H3K36 histone methylation-dependent mechanism, which requires the methyltransferase SET DOMAIN GROUP 8 (SDG8). During callus induction, the increased auxin accumulates SDG8 expression through a TIR1/AFBs-based transcriptional regulation. SDG8 then deposits H3K36me3 modifications on the loci of callus-related genes, including a master regulator WOX5 and the cell proliferation-related genes, such as CYCB1.1. This epigenetic regulation in turn is required for the transcriptional activation of these genes during callus formation. These findings suggest that the massive transcriptional reprogramming for cell fate transition by auxin during callus formation requires epigenetic modifications including SDG8-mediated histone H3K36 methylation. Our results provide insight into the coordination between auxin signaling and epigenetic regulation during fundamental processes in plant development.
Although the Trithorax histone methyltransferases ATX1–5 are known to regulate development and stress responses by catalyzing histone H3K4 methylation in Arabidopsis thaliana, it is unknown whether and how these histone methyltransferases affect DNA methylation. Here, we found that the redundant ATX1–5 proteins are not only required for plant development and viability but also for the regulation of DNA methylation. The expression and H3K4me3 levels of both RNA-directed DNA methylation (RdDM) genes (NRPE1, DCL3, IDN2, and IDP2) and active DNA demethylation genes (ROS1, DML2, and DML3) were downregulated in the atx1/2/4/5 mutant. Consistent with the facts that the active DNA demethylation pathway mediates DNA demethylation mainly at CG and CHG sites, and that the RdDM pathway mediates DNA methylation mainly at CHH sites, whole-genome DNA methylation analyses showed that hyper-CG and CHG DMRs in atx1/2/4/5 significantly overlapped with those in the DNA demethylation pathway mutant ros1 dml2 dml3 (rdd), and that hypo-CHH DMRs in atx1/2/4/5 significantly overlapped with those in the RdDM mutant nrpe1, suggesting that the ATX paralogues function redundantly to regulate DNA methylation by promoting H3K4me3 levels and expression levels of both RdDM genes and active DNA demethylation genes. Given that the ATX proteins function as catalytic subunits of COMPASS histone methyltransferase complexes, we also demonstrated that the COMPASS complex components function as a whole to regulate DNA methylation. This study reveals a previously uncharacterized mechanism underlying the regulation of DNA methylation.
Maintaining proper DNA methylation levels in the genome requires active demethylation of DNA. However, removing the methyl group from a modified cytosine is chemically difficult and therefore, the underlying mechanism of demethylation had remained unclear for many years. The discovery of the first eukaryotic DNA demethylase, Arabidopsis thaliana REPRESSOR OF SILENCING 1 (ROS1), led to elucidation of the 5-methylcytosine base excision repair mechanism of active DNA demethylation. In the 20 years since ROS1 was discovered, our understanding of this active DNA demethylation pathway, as well as its regulation and biological functions in plants, has greatly expanded. These exciting developments have laid the groundwork for further dissecting the regulatory mechanisms of active DNA demethylation, with potential applications in epigenome editing to facilitate crop breeding and gene therapy.
Autophagy is an evolutionarily conserved degradation pathway in eukaryotes; it plays a critical role in nutritional stress tolerance. The circadian clock is an endogenous timekeeping system that generates biological rhythms to adapt to daily changes in the environment. Accumulating evidence indicates that the circadian clock and autophagy are intimately interwoven in animals. However, the role of the circadian clock in regulating autophagy has been poorly elucidated in plants. Here, we show that autophagy exhibits a robust circadian rhythm in both light/dark cycle (LD) and in constant light (LL) in Arabidopsis. However, autophagy rhythm showed a different pattern with a phase-advance shift and a lower amplitude in LL compared to LD. Moreover, mutation of the transcription factor LUX ARRHYTHMO (LUX) removed autophagy rhythm in LL and led to an enhanced amplitude in LD. LUX represses expression of the core autophagy genes ATG2, ATG8a, and ATG11 by directly binding to their promoters. Phenotypic analysis revealed that LUX is responsible for improved resistance of plants to carbon starvation, which is dependent on moderate autophagy activity. Comprehensive transcriptomic analysis revealed that the autophagy rhythm is ubiquitous in plants. Taken together, our findings demonstrate that the LUX-mediated circadian clock regulates plant autophagy rhythms.
Repression of embryonic traits during the seed-to-seedling phase transition requires the inactivation of master transcription factors associated with embryogenesis. How the timing of such inactivation is controlled is unclear. Here, we report on a novel transcriptional co-repressor, Arabidopsis thaliana SDR4L, that forms a feedback inhibition loop with the master transcription factors LEC1 and ABI3 to repress embryonic traits post-imbibition. LEC1 and ABI3 regulate their own expression by inducing AtSDR4L during mid to late embryogenesis. AtSDR4L binds to sites upstream of LEC1 and ABI4, and these transcripts are upregulated in Atsdr4l seedlings. Atsdr4l seedlings phenocopy a LEC1 overexpressor. The embryonic traits of Atsdr4l can be partially rescued by impairing LEC1 or ABI3. The penetrance and expressivity of the Atsdr4l phenotypes depend on both developmental and external cues, demonstrating the importance of AtSDR4L in seedling establishment under suboptimal conditions.
Double fertilization is an innovative phenomenon in angiosperms, in which one sperm cell first fuses with the egg cell to produce the embryo, and then the other sperm fuses with the central cell to produce the endosperm. However, the molecular mechanism of the preferential fertilization of egg cells is poorly understood. In this study, we report that two egg cell-secreted aspartic proteases, ECS1 and ECS2, play an important role in promoting preferential fertilization of egg cells in Arabidopsis. We show that simultaneous loss of ECS1 and ECS2 function resulted in an approximately 20% reduction in fertility, which can be complemented by the full-length ECS1/2 but not by corresponding active site mutants or by secretion-defective versions of ECS1/2. Detailed phenotypic analysis revealed that the egg cell–sperm cell attachment was compromised in ecs1 ecs2 siliques. Limited pollination assays with cyclin-dependent kinase a1 (cdka;1) pollen showed that preferential egg cell fertilization was impaired in the ecs1 ecs2 mutant. Taken together, these results demonstrate that egg cells secret two aspartic proteases, ECS1 and ECS2, to facilitate the attachment of sperm cells to egg cells so that preferential fertilization of egg cells is achieved. This study reveals the molecular mechanism of preferential fertilization in Arabidopsis thaliana.
The ginsenoside Rg3 found in Panax species has extensive pharmacological properties, in particular anti-cancer effects. However, its natural yield in Panax plants is limited. Here, we report a multi-modular strategy to improve yields of Rg3 in a Panax ginseng chassis, combining engineering of triterpene metabolism and overexpression of a lignin biosynthesis gene, phenylalanine ammonia lyase (PAL). We first performed semi-rational design and site mutagenesis to improve the enzymatic efficiency of Pq3-O-UGT2, a glycosyltransferase that directly catalyzes the biosynthesis of Rg3 from Rh2. Next, we used clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to knock down the branch pathway of protopanaxatriol-type ginsenoside biosynthesis to enhance the metabolic flux of the protopanaxadiol-type ginsenoside Rg3. Overexpression of PAL accelerated the formation of the xylem structure, significantly improving ginsenoside Rg3 accumulation (to 6.19-fold higher than in the control). We combined overexpression of the ginsenoside aglycon synthetic genes squalene epoxidase, Pq3-O-UGT2, and PAL with CRISPR/Cas9-based knockdown of CYP716A53v2 to improve ginsenoside Rg3 accumulation. Finally, we produced ginsenoside Rg3 at a yield of 83.6 mg/L in a shake flask (7.0 mg/g dry weight, 21.12-fold higher than with wild-type cultures). The high-production system established in this study could be a potential platform to produce the ginsenoside Rg3 commercially for pharmaceutical use.
Endoreduplication is prevalent during plant growth and development, and is often correlated with large cell and organ size. Despite its prevalence, the transcriptional regulatory mechanisms underlying the transition from mitotic cell division to endoreduplication remain elusive. Here, we characterize ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR 4 (ERF4) as a positive regulator of endoreduplication through its function as a transcriptional repressor. ERF4 was specifically expressed in mature tissues in which the cells were undergoing expansion, but was rarely expressed in young organs. Plants overexpressing ERF4 exhibited much larger cells and organs, while plants that lacked functional ERF4 displayed smaller organs than the wild-type. ERF4 was further shown to regulate cell size by controlling the endopolyploidy level in the nuclei. Moreover, ERF4 physically associates with the class I TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) protein TCP15, a transcription factor that inhibits endoreduplication by activating the expression of a key cell-cycle gene, CYCLIN A2;3 (CYCA2;3). A molecular and genetic analysis revealed that ERF4 promotes endoreduplication by directly suppressing the expression of CYCA2;3. Together, this study demonstrates that ERF4 and TCP15 function as a module to antagonistically regulate each other's activity in regulating downstream genes, thereby controlling the switch from the mitotic cell cycle to endoreduplication during leaf development. These findings expand our understanding of how the control of the cell cycle is fine-tuned by an ERF4–TCP15 transcriptional complex.
The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis. The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the plant and animal kingdoms. We previously used conical cell of Arabidopsis thaliana petals as a model system to investigate cortical microtubule organization and cell morphogenesis and determined that KATANIN promotes the formation of circumferential cortical microtubule arrays in conical cells. Here, we demonstrate that the conserved protein phosphatase PP2A interacts with and dephosphorylates KATANIN to promote the formation of circumferential cortical microtubule arrays in conical cells. KATANIN undergoes cycles of phosphorylation and dephosphorylation. Using co-immunoprecipitation coupled with mass spectrometry, we identified PP2A subunits as KATANIN-interacting proteins. Further biochemical studies showed that PP2A interacts with and dephosphorylates KATANIN to stabilize its cellular abundance. Similar to the katanin mutant, mutants for genes encoding PP2A subunits showed disordered cortical microtubule arrays and defective conical cell shape. Taken together, these findings identify PP2A as a regulator of conical cell shape and suggest that PP2A mediates KATANIN phospho-regulation during plant cell morphogenesis.
Vitamin B1 (VB1), including thiamin, thiamin monophosphate (TMP), and thiamin pyrophosphate (TPP), is an essential micronutrient for all living organisms. Nevertheless, the precise function of VB1 in rice remains unclear. Here, we described a VB1 auxotrophic mutant, chlorotic lethal seedling (cles) from the mutation of OsTH1, which displayed collapsed chloroplast membrane system and decreased pigment content. OsTH1 encoded a phosphomethylpyrimidine kinase/thiamin-phosphate pyrophosphorylase, and was expressed in various tissues, especially in seedlings, leaves, and young panicles. The VB1 content in cles was markedly reduced, despite an increase in the expression of VB1 synthesis genes. The decreased TPP content affected the tricarboxylic acid cycle, pentose phosphate pathway, and de novo fatty acid synthesis, leading to a reduction in fatty acids (C16:0 and C18:0) and sugars (sucrose and glucose) of cles. Additionally, irregular expression of chloroplast membrane synthesis genes led to membrane collapse. We also found that alternative splicing and translation allowed OsTH1 to be localized to both chloroplast and cytosol. Our study revealed that OsTH1 was an essential enzyme in VB1 biosynthesis and played crucial roles in seedling growth and development by participating in fatty acid and sugar metabolism, providing new perspectives on VB1 function in rice.
For Upcoming Special lssue: