Epigenetics
The structural basis for histone recognition by the histone chaperone nuclear autoantigenic sperm protein (NASP) remains largely unclear. Here, we showed that Arabidopsis thaliana AtNASP is a monomer and displays robust nucleosome assembly activity in vitro. Examining the structure of AtNASP complexed with a histone H3 α3 peptide revealed a binding mode that is conserved in human NASP. AtNASP recognizes the H3 N-terminal region distinct from human NASP. Moreover, AtNASP forms a co-chaperone complex with ANTI-SILENCING FUNCTION 1 (ASF1) by binding to the H3 N-terminal region. Therefore, we deciphered the structure of AtNASP and the basis of the AtNASP–H3 interaction.
DNA methylation, a conserved epigenetic mark, is critical for tuning temporal and spatial gene expression. The Arabidopsis thaliana DNA glycosylase/lyase REPRESSOR OF SILENCING 1 (ROS1) initiates active DNA demethylation and is required to prevent DNA hypermethylation at thousands of genomic loci. However, how ROS1 is recruited to specific loci is not well understood. Here, we report the discovery of Arabidopsis AGENET Domain Containing Protein 3 (AGDP3) as a cellular factor that is required to prevent gene silencing and DNA hypermethylation. AGDP3 binds to H3K9me2 marks in its target DNA via its AGD12 cassette. Analysis of the crystal structure of the AGD12 cassette of AGDP3 in complex with an H3K9me2 peptide revealed that dimethylated H3K9 and unmodified H3K4 are specifically anchored into two different surface pockets. A histidine residue located in the methyllysine binding aromatic cage provides AGDP3 with pH-dependent H3K9me2 binding capacity. Our results uncover a molecular mechanism for the regulation of DNA demethylation by the gene silencing mark H3K9me2.
Associations between 3D chromatin architectures and epigenetic modifications have been characterized in animals. However, any impact of DNA methylation on chromatin architecture in plants is understudied, which is confined to Arabidopsis thaliana. Because plant species differ in genome size, composition, and overall chromatin packing, it is unclear to what extent findings from A. thaliana hold in other species. Moreover, the incomplete chromatin architectural profiles and the low-resolution high-throughput chromosome conformation capture (Hi-C) data from A. thaliana have hampered characterizing its subtle chromatin structures and their associations with DNA methylation. We constructed a high-resolution Hi-C interaction map for the null OsMET1-2 (the major CG methyltransferase in rice) mutant (osmet1-2) and isogenic wild-type rice (WT). Chromatin structural changes occurred in osmet1-2, including intra-/inter-chromosomal interactions, compartment transition, and topologically associated domains (TAD) variations. Our findings provide novel insights into the potential function of DNA methylation in TAD formation in rice and confirmed DNA methylation plays similar essential roles in chromatin packing in A. thaliana and rice.
Active DNA demethylation effectively modulates gene expression during plant development and in response to stress. However, little is known about the upstream regulatory factors that regulate DNA demethylation. We determined that the demethylation regulator 1 (demr1) mutant exhibits a distinct DNA methylation profile at selected loci queried by methylation-sensitive polymerase chain reaction and globally based on whole-genome bisulfite sequencing. Notably, the transcript levels of the DNA demethylase gene REPRESSOR OF SILENCING 1 (ROS1) were lower in the demr1 mutant. We established that DEMR1 directly binds to the ROS1 promoter in vivo and in vitro, and the methylation level in the DNA methylation monitoring sequence of ROS1 promoter decreased by 60% in the demr1 mutant. About 40% of the hyper-differentially methylated regions (DMRs) in the demr1 mutant were shared with the ros1-4 mutant. Genetic analysis indicated that DEMR1 acts upstream of ROS1 to positively regulate abscisic acid (ABA) signaling during seed germination and seedling establishment stages. Surprisingly, the loss of DEMR1 function also caused a rise in methylation levels of the mitochondrial genome, impaired mitochondrial structure and an early flowering phenotype. Together, our results show that DEMR1 is a novel regulator of DNA demethylation of both the nuclear and mitochondrial genomes in response to ABA and plant development in Arabidopsis.
Twenty-four nucleotide long microRNAs (lmiRNAs) direct DNA methylation at target genes and regulate their transcription. The evolutionary origin of lmiRNAs and the range of lmiRNA-mediated regulation remain obscure. Here, we reannotated lmiRNAs and their targets in rice by applying stringent criteria. We found that the majority of lmiRNAs are derived from Miniature Inverted-repeat Transposable Elements (MITEs) and most sites targeted by MITE-derived lmiRNAs reside within MITEs, suggesting co-evolution of lmiRNAs and their targets through MITE amplification. lmiRNAs undergo dynamically changes under stress conditions and the genes targeted by lmiRNAs show an enrichment for stress-responsive genes, suggesting that lmiRNAs are widely involved in plant responses to stresses. We constructed the evolutionary histories of lmiRNAs and their targets. Nearly half of lmiRNAs emerged before or when the AA genome was diverged, while the emergence of lmiRNA targets coincided with or followed the emergence of lmiRNAs. Furthermore, we found that the sequences of a lmiRNA target site underwent variations, coincident with the divergence of rice accessions and the distribution of rice accessions in different geographical locations and climatic conditions. Our findings highlight MITEs as an important origin of lmiRNAs and suggest that the evolution of lmiRNA-target regulatory modules may contribute to rice adaptation to environmental changes.
The development of plants is largely dependent on their growth environment. To better adapt to a particular habitat, plants have evolved various subtle regulatory mechanisms for altering gene expression. Non coding RNAs (ncRNAs) constitute a major portion of the transcriptomes of eukaryotes. Various ncRNAs have been recognized as important regulators of the expression of genes involved in essential biological processes throughout the whole life cycles of plants. In this review, we summarize the current understanding of the biogenesis and contributions of small nucle olar RNA (snoRNA)- and regulatory long non coding RNA (lncRNA)-mediated gene regulation in plant development and environmental responses. Many regulatory ncRNAs appear to be associated with increased yield, quality and disease resistance of various species and cultivars. These ncRNAs may potentially be used as genetic resources for improving agronomic traits and for molecular breeding. The challenges in understanding plant ncRNA biology and the possibilities to make better use of these valuable gene resources in the future are discussed in this review.
DNA methylation plays essential homeostatic functions in eukaryotic genomes. In animals, DNA methylation is also developmentally regulated and, in turn, regulates development. In the past two decades, huge research effort has endorsed the understanding that DNA methylation plays a similar role in plant development, especially during sexual reproduction. The power of whole-genome sequencing and cell isolation techniques, as well as bioinformatics tools, have enabled recent studies to reveal dynamic changes in DNA methylation during germline development. Furthermore, the combination of these technological advances with genetics, developmental biology and cell biology tools has revealed functional methylation reprogramming events that control gene and transposon activities in flowering plant germlines. In this review, we discuss the major advances in our knowledge of DNA methylation dynamics during male and female germline development in flowering plants.
Maintaining correct DNA methylation patterns entails the addition of methyl groups by DNA methyltransferases and the active removal of methylation from DNA. Removing a methyl group from 5-methylcytosine requires breaking a strong C–C bond, suggesting that demethylation might occur by an alternative mechanism that does not involve severing this bond. Indeed, the discovery of the 5-methylcytosine DNA glycosylase (also known as DNA demethylase) REPRESSOR OF SILENCING 1 (ROS1) by (Gong et al., 2002) revolutionized thinking in this field, as the study of ROS1 revealed a mechanism by which 5-methylcytosine is excised and replaced by the DNA repair machinery. This special issue celebrates the 20th anniversary of the discovery of ROS1 and the remarkable research that followed.
The glucose sensor HEXOKINASE1 (HXK1) integrates myriad external and internal signals to regulate gene expression and development in Arabidopsis thaliana. However, how HXK1 mediates glucose signaling in the nucleus remains unclear. Here, using immunoprecipitation-coupled mass spectrometry, we show that two catalytic subunits of Polycomb Repressive Complex 2, SWINGER (SWN) and CURLY LEAF (CLF), directly interact with catalytically active HXK1 and its inactive forms (HXK1G104D and HXK1S177A) via their evolutionarily conserved SANT domains. HXK1, CLF, and SWN target common glucose-responsive genes to regulate glucose signaling, as revealed by RNA sequencing. The glucose-insensitive phenotypes of the Arabidopsis swn-1 and clf-50 mutants were similar to that of hxk1, and genetic analysis revealed that CLF, SWN, and HXK1 function in the same genetic pathway. Intriguingly, HXK1 is required for CLF- and SWN-mediated histone H3 lysine 27 (H3K27me3) deposition and glucose-mediated gene repression. Moreover, CLF and SWN affect the recruitment of HXK1 to its target chromatin. These findings support a model in which HXK1 and epigenetic modifiers form a nuclear complex to cooperatively mediate glucose signaling, thereby affecting the histone modification and expression of glucose-regulated genes in plants.
Proteins usually assemble oligomers or high-order complexes to increase their efficiency and specificity in biological processes. The dynamic equilibrium of complex formation and disruption imposes reversible regulation of protein function. MicroProteins are small, single-domain proteins that directly bind target protein complexes and disrupt their assembly. Growing evidence shows that microProteins are efficient regulators of protein activity at the post-translational level. In the last few decades, thousands of plant microProteins have been predicted by computational approaches, but only a few have been experimentally validated. Recent studies highlighted the mechanistic working modes of newly-identified microProteins in Arabidopsis and other plant species. Here, we review characterized microProteins, including their biological roles, regulatory targets, and modes of action. In particular, we focus on microProtein-directed allosteric modulation of key components in light signaling pathways, and we summarize the biogenesis and evolutionary trajectory of known microProteins in plants. Understanding the regulatory mechanisms of microProteins is an important step towards potential utilization of microProteins as versatile biotechnological tools in crop bioengineering.
In plant chloroplasts, photosystem II (PSII) complexes, together with light-harvesting complex II (LHCII), form various PSII-LHCII supercomplexes (SCs). This process likely involves immunophilins, but the underlying regulatory mechanisms are unclear. Here, by comparing Arabidopsis thaliana mutants lacking the chloroplast lumen-localized immunophilin CYCLOPHILIN28 (CYP28) to wild-type and transgenic complemented lines, we determined that CYP28 regulates the assembly and accumulation of PSII-LHCII SCs. Compared to the wild type, cyp28 plants showed accelerated leaf growth, earlier flowering time, and enhanced accumulation of high molecular weight PSII-LHCII SCs under normal light conditions. The lack of CYP28 also significantly affected the electron transport rate. Blue native-polyacrylamide gel electrophoresis analysis revealed more Lhcb6 and less Lhcb4 in M-LHCII-Lhcb4-Lhcb6 complexes in cyp28 versus wild-type plants. Peptidyl-prolyl cis/trans isomerase (PPIase) activity assays revealed that CYP28 exhibits weak PPIase activity and that its K113 and E187 residues are critical for this activity. Mutant analysis suggested that CYP28 may regulate PSII-LHCII SC accumulation by altering the configuration of Lhcb6 via its PPIase activity. Furthermore, the Lhcb6-P139 residue is critical for PSII-LHCII SC assembly and accumulation. Therefore, our findings suggest that CYP28 likely regulates PSII-LHCII SC assembly and accumulation by altering the configuration of P139 of Lhcb6 via its PPIase activity.
For Upcoming Special lssue: