Hormone signaling

    Default Latest Most Read
    Please wait a minute...
    For Selected: Toggle Thumbnails
      
    Tyrosylprotein sulfotransferase suppresses ABA signaling via sulfation of SnRK2.2/2.3/2.6
    Jun Wang, Chunyan Wang, Tianrun Wang, Shizhong Zhang, Kang Yan, Guodong Yang, Changai Wu, Chengchao Zheng and Jinguang Huang
    J Integr Plant Biol 2023, 65 (8): 1846-1851.  
    doi: 10.1111/jipb.13493
    Abstract (Browse 211)  |   Save
    Phytohormone abscisic acid (ABA) plays vital roles in stress tolerance, while long-term overactivation of ABA signaling suppresses plant growth and development. However, the braking mechanism of ABA responses is not clear. Protein tyrosine sulfation catalyzed by tyrosylprotein sulfotransferase (TPST) is a critical post-translational modification. Through genetic screening, we identified a tpst mutant in Arabidopsis that was hypersensitive to ABA. In-depth analysis revealed that TPST could interact with and sulfate SnRK2.2/2.3/2.6, which accelerated their degradation and weakened the ABA signaling. Taken together, these findings uncovered a novel mechanism of desensitizing ABA responses via protein sulfation.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Fine-tuning brassinosteroid biosynthesis via 3′UTR-dependent decay of CPD mRNA modulates wood formation in Populus
    Dian Wang, Xiaoning Hao, Li Xu, Mengyan Zhao, Congpeng Wang, Xihao Yu, Yingzhen Kong, Mengzhu Lu, Gongke Zhou, Guohua Chai and Xianfeng Tang
    J Integr Plant Biol 2023, 65 (8): 1852-1858.  
    doi: 10.1111/jipb.13509
    Abstract (Browse 229)  |   Save
    Brassinosteroids (BRs) are plant hormones that regulate wood formation in trees. Currently, little is known about the post-transcriptional regulation of BR synthesis. Here, we show that during wood formation, fine-tuning BR synthesis requires 3′UTR-dependent decay of Populus CONSTITUTIVE PHOTOMORPHOGENIC DWARF 1 (PdCPD1). Overexpression of PdCPD1 or its 3′ UTR fragment resulted in a significant increase of BR levels and inhibited secondary growth. In contrast, transgenic poplars repressing PdCPD1 3′ UTR expression displayed moderate levels of BR and promoted wood formation. We show that the Populus GLYCINE-RICH RNA-BINDING PROTEIN 1 (PdGRP1) directly binds to a GU-rich element in 3′ UTR of PdCPD1, leading to its mRNA decay. We thus provide a post-transcriptional mechanism underlying BRs synthesis during wood formation, which may be useful for genetic manipulation of wood biomass in trees.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    The brassinosteroid signaling component SlBZR1 promotes tomato fruit ripening and carotenoid accumulation
    Fanliang Meng, Haoran Liu, Songshen Hu, Chengguo Jia, Min Zhang, Songwen Li, Yuanyuan Li, Jiayao Lin, Yue Jian, Mengyu Wang, Zhiyong Shao, Yuanyu Mao, Lihong Liu and Qiaomei Wang
    J Integr Plant Biol 2023, 65 (7): 1794-1813.  
    doi: 10.1111/jipb.13491
    Abstract (Browse 264)  |   Save
    The plant hormone ethylene is essential for climacteric fruit ripening, although it is unclear how other phytohormones and their interactions with ethylene might affect fruit ripening. Here, we explored how brassinosteroids (BRs) regulate fruit ripening in tomato (Solanum lycopersicum) and how they interact with ethylene. Exogenous BR treatment and increased endogenous BR contents in tomato plants overexpressing the BR biosynthetic gene SlCYP90B3 promoted ethylene production and fruit ripening. Genetic analysis indicated that the BR signaling regulators Brassinazole-resistant1 (SlBZR1) and BRI1-EMS-suppressor1 (SlBES1) act redundantly in fruit softening. Knocking out SlBZR1 inhibited ripening through transcriptome reprogramming at the onset of ripening. Combined transcriptome deep sequencing and chromatin immunoprecipitation followed by sequencing identified 73 SlBZR1-repressed targets and 203 SlBZR1-induced targets involving major ripening-related genes, suggesting that SlBZR1 positively regulates tomato fruit ripening. SlBZR1 directly targeted several ethylene and carotenoid biosynthetic genes to contribute to the ethylene burst and carotenoid accumulation to ensure normal ripening and quality formation. Furthermore, knock-out of Brassinosteroid-insensitive2 (SlBIN2), a negative regulator of BR signaling upstream of SlBZR1, promoted fruit ripening and carotenoid accumulation. Taken together, our results highlight the role of SlBZR1 as a master regulator of tomato fruit ripening with potential for tomato quality improvement and carotenoid biofortification.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(2)
      
    The MAX2-KAI2 module promotes salicylic acid-mediated immune responses in Arabidopsis
    Xiujuan Zheng, Fangqian Liu, Xianfeng Yang, Weiqiang Li, Sique Chen, Xinwu Yue, Qi Jia and Xinli Sun
    J Integr Plant Biol 2023, 65 (6): 1566-1584.  
    DOI: 10.1111/jipb.13463
    Abstract (Browse 202)  |   Save
    Arabidopsis MORE AXILLARY GROWTH2 (MAX2) is a key component in the strigolactone (SL) and karrikin (KAR) signaling pathways and regulates the degradation of SUPPRESSOR OF MAX2 1/ SMAX1-like (SMAX1/SMXL) proteins, which are transcriptional co-repressors that regulate plant architecture, as well as abiotic and biotic stress responses. The max2 mutation reduces resistance against Pseudomonas syringae pv. tomato (Pst). To uncover the mechanism of MAX2-mediated resistance, we evaluated the resistance of various SL and KAR signaling pathway mutants. The resistance of SL-deficient mutants and of dwarf 14 (d14) was similar to that of the wild-type, whereas the resistance of the karrikin insensitive 2 (kai2) mutant was compromised, demonstrating that the KAR signaling pathway, not the SL signaling pathway, positively regulates the immune response. We measured the resistance of smax1 and smxl mutants, as well as the double, triple, and quadruple mutants with max2, which revealed that both the smax1 mutant and smxl6/7/8 triple mutant rescue the low resistance phenotype of max2 and that SMAX1 accumulation diminishes resistance. The susceptibility of smax1D, containing a degradation-insensitive form of SMAX1, further confirmed the SMAX1 function in the resistance. The relationship between the accumulation of SMAX1/SMXLs and disease resistance suggested that the inhibitory activity of SMAX1 to resistance requires SMXL6/7/8. Moreover, the exogenous application of KAR2 enhanced resistance against Pst, but KAR-induced resistance depended on salicylic acid (SA) signaling. Inhibition of karrikin signaling delayed SA-mediated defense responses and inhibited pathogen-induced protein biosynthesis. Together, we propose that the MAX2-KAI2-SMAX1 complex regulates resistance with the assistance of SMXL6/7/8 and SA signaling and that SMAX1/SMXLs possibly form a multimeric complex with their target transcription factors to fine tune immune responses.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Brassinosteroids fine‐tune secondary and primary sulfur metabolism through BZR1‐mediated transcriptional regulation
    Mengyu Wang, Congxi Cai, Yubo Li, Han Tao, Fanliang Meng, Bo Sun, Huiying Miao and Qiaomei Wang
    J Integr Plant Biol 2023, 65 (5): 1153-1169.  
    doi: 10.1111/jipb.13442
    Abstract (Browse 199)  |   Save
    For adaptation to ever‐changing environments, plants have evolved elaborate metabolic systems coupled to a regulatory network for optimal growth and defense. Regulation of plant secondary metabolic pathways such as glucosinolates (GSLs) by defense phytohormones in response to different stresses and nutrient deficiency has been intensively investigated, while how growth‐promoting hormone balances plant secondary and primary metabolism has been largely unexplored. Here, we found that growth‐promoting hormone brassinosteroid (BR) inhibits GSLs accumulation while enhancing biosynthesis of primary sulfur metabolites, including cysteine (Cys) and glutathione (GSH) both in Arabidopsis and Brassica crops, fine‐tuning secondary and primary sulfur metabolism to promote plant growth. Furthermore, we demonstrate that of BRASSINAZOLE RESISTANT 1 (BZR1), the central component of BR signaling, exerts distinct transcriptional inhibition regulation on indolic and aliphatic GSL via direct MYB51 dependent repression of indolic GSL biosynthesis, while exerting partial MYB29 dependent repression of aliphatic GSL biosynthesis. Additionally, BZR1 directly activates the transcription of APR1 and APR2 which encodes rate‐limiting enzyme adenosine 5′‐phosphosulfate reductases in the primary sulfur metabolic pathway. In summary, our findings indicate that BR inhibits the biosynthesis of GSLs to prioritize sulfur usage for primary metabolites under normal growth conditions. These findings expand our understanding of BR promoting plant growth from a metabolism perspective.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(1)
      
    ZmMYC2s play important roles in maize responses to simulated herbivory and jasmonate
    Canrong Ma, Ruoyue Li, Yan Sun, Mou Zhang, Sen Li, Yuxing Xu, Juan Song, Jing Li, Jinfeng Qi, Lei Wang and Jianqiang Wu
    J Integr Plant Biol 2023, 65 (4): 1041-1058.  
    DOI: 10.1111/jipb.13404
    Abstract (Browse 271)  |   Save
    Both herbivory and jasmonic acid (JA) activate the biosynthesis of defensive metabolites in maize, but the mechanism underlying this remains unclear. We generated maize mutants in which ZmMYC2a and ZmMYC2b, two transcription factor genes important in JA signaling, were individually or both knocked out. Genetic and biochemical analyses were used to elucidate the functions of ZmMYC2 proteins in the maize response to simulated herbivory and JA. Compared with the wild‐type (WT) maize, the double mutant myc2ab was highly susceptible to insects, and the levels of benzoxazinoids and volatile terpenes, and the levels of their biosynthesis gene transcripts, were much lower in the mutants than in the WT maize after simulated insect feeding or JA treatment. Moreover, ZmMYC2a and ZmMYC2b played a redundant role in maize resistance to insects and JA signaling. Transcriptome and Cleavage Under Targets and Tagmentation‐ Sequencing (CUT&Tag‐Seq) analysis indicated that ZmMYC2s physically targeted 60% of the JA‐ responsive genes, even though only 33% of these genes were transcriptionally ZmMYC2‐dependent. Importantly, CUT&Tag‐Seq and dual luciferase assays revealed that ZmMYC2s transactivate the benzoxazinoid and volatile terpene biosynthesis genes IGPS1/3, BX10/11/12/14, and TPS10/2/3/4/ 5/8 by directly binding to their promoters. Furthermore, several transcription factors physically targeted by ZmMYC2s were identified, and these are likely to function in the regulation of benzoxazinoid biosynthesis. This work reveals the transcriptional regulatory landscapes of both JA signaling and ZmMYC2s in maize and provides comprehensive mechanistic insight into how JA signaling modulates defenses in maize responses to herbivory through ZmMYC2s.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(3)
      
    Salicylic acid biosynthesis is not from phenylalanine in Arabidopsis
    Jie Wu, Wentao Zhu and Qiao Zhao
    J Integr Plant Biol 2023, 65 (4): 881-887.  
    doi: 10.1111/jipb.13410
    Abstract (Browse 301)  |   Save
    The phytohormone salicylic acid (SA) regulates biotic and abiotic stress responses in plants. Two distinct biosynthetic pathways for SA have been well documented in plants: the isochorismate (IC) pathway in the chloroplast and the phenylalanine ammonia‐lyase (PAL) pathway in the cytosol. However, there has been no solid evidence that the PAL pathway contributes to SA biosynthesis. Here, we report that feeding Arabidopsis thaliana with Ring‐13C‐labeled phenylalanine (13C6‐Phe) resulted in incorporation of the 13C label not into SA, but into its isomer 4‐hydroxybenzoic acid (4‐HBA) instead. We obtained similar results when feeding 13C6‐Phe to the SA‐deficient ics1 ics2 mutant and the SA‐hyperaccumulating mutant s3h s5h. Notably, we detected 13C6‐SA when 13C6‐benzoic acid (BA) was provided, suggesting that SA can be synthesized from BA. Furthermore, despite the substantial accumulation of SA upon pathogen infection, we did not observe incorporation of 13C label from Phe into SA. We also did not detect 13C6‐SA in PAL‐overexpressing lines in the kfb01 kfb02 kfb39 kfb50 background after being fed 13C6‐ Phe, although endogenous PAL levels were dramatically increased. Based on these combined results, we propose that SA biosynthesis is not from Phe in Arabidopsis. These results have important implications for our understanding of the SA biosynthetic pathway in land plants.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(8)
      
    Unrelated to phenylalanine: Feeding studies provide new insight into salicylic acid biosynthesis
    Jingjing Tan, Ping He and De‐Yu Xie
    J Integr Plant Biol 2023, 65 (4): 879-880.  
    doi: 10.1111/jipb.13479
    Abstract (Browse 165)  |   Save
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato
    Shengmin An, Yue Liu, Kangqi Sang, Ting Wang, Jingquan Yu, Yanhong Zhou, Xiaojian Xia
    J Integr Plant Biol 2023, 65 (1): 10-24.  
    doi: 10.1111/jipb.13356
    Abstract (Browse 326)  |   Save
    Brassinosteroids (BRs) and abscisic acid (ABA) are essential regulators of plant growth and stress tolerance. Although the antagonistic interaction of BRs and ABA is proposed to ensure the balance between growth and defense in model plants, the crosstalk between BRs and ABA in response to chilling in tomato (Solanum lycopersicum), a warm-climate horticultural crop, is unclear. Here, we determined that overexpression of the BR biosynthesis gene DWARF (DWF) or the key BR signaling gene BRASSINAZOLE-RESISTANT1 (BZR1) increases ABA levels in response to chilling stress via positively regulating the expression of the ABA biosynthesis gene 9-CIS-EPOXYCAROTENOID DIOXYGENASE1 (NCED1). BR-induced chilling tolerance was mostly dependent on ABA biosynthesis. Chilling stress or high BR levels decreased the abundance of BRASSINOSTEROID-INSENSITIVE2 (BIN2), a negative regulator of BR signaling. Moreover, we observed that chilling stress increases BR levels and results in the accumulation of BZR1. BIN2 negatively regulated both the accumulation of BZR1 protein and chilling tolerance by suppressing ABA biosynthesis. Our results demonstrate that BR signaling positively regulates chilling tolerance via ABA biosynthesis in tomato. The study has implications in production of warm-climate crops in horticulture.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(9)
      
    Methionine oxidation and reduction of the ethylene signaling component MaEIL9 are involved in banana fruit ripening
    Lisha Zhu, Lin Chen, Chaojie Wu, Wei Shan, Danling Cai, Zengxiang Lin, Wei Wei, Jianye Chen, Wangjin Lu, Jianfei Kuang
    J Integr Plant Biol 2023, 65 (1): 150-166.  
    doi: 10.1111/jipb.13363
    Abstract (Browse 260)  |   Save
    The ethylene insensitive 3/ethylene insensitive 3-like (EIN3/EIL) plays an indispensable role in fruit ripening. However, the regulatory mechanism that links post-translational modification of EIN3/EIL to fruit ripening is largely unknown. Here, we studied the expression of 13 MaEIL genes during banana fruit ripening, among which MaEIL9 displayed higher enhancement particularly in the ripening stage. Consistent with its transcript pattern, abundance of MaEIL9 protein gradually increased during the ripening process, with maximal enhancement in the ripening. DNA affinity purification (DAP)-seq analysis revealed that MaEIL9 directly targets a subset of genes related to fruit ripening, such as the starch hydrolytic genes MaAMY3D and MaBAM1. Stably overexpressing MaEIL9 in tomato fruit hastened fruit ripening, whereas transiently silencing this gene in banana fruit retarded the ripening process, supporting a positive role of MaEIL9 in fruit ripening. Moreover, oxidation of methionines (Met-129, Met-130, and Met-282) in MaEIL9 resulted in the loss of its DNA-binding capacity and transcriptional activation activity. Importantly, we identified MaEIL9 as a potential substrate protein of methionine sulfoxide reductase A MaMsrA4, and oxidation of Met-129, Met-130, and Met-282 in MaEIL9 could be restored by MaMsrA4. Collectively, our findings reveal a novel regulatory network controlling banana fruit ripening, which involves MaMsrA4-mediated redox regulation of the ethylene signaling component MaEIL9.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(8)
      
    CHH methylation of genes associated with fatty acid and jasmonate biosynthesis contributes to cold tolerance in autotetraploids of Poncirus trifoliata
    Yue Wang, Lanlan Zuo, Tonglu Wei, Yu Zhang, Yang Zhang, Ruhong Ming, Daharo Bachar, Wei Xiao, Khan Madiha, Chuanwu Chen, Qijun Fan, Chunlong Li, Ji-Hong Liu
    J Integr Plant Biol 2022, 64 (12): 2327-2343.  
    doi: 10.1111/jipb.13379
    Abstract (Browse 327)  |   Save

    Polyploids have elevated stress tolerance, but the underlying mechanisms remain largely elusive. In this study, we showed that naturally occurring tetraploid plants of trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced cold tolerance relative to their diploid progenitors. Transcriptome analysis revealed that whole-genome duplication was associated with higher expression levels of a range of well-characterized cold stress-responsive genes. Global DNA methylation profiling demonstrated that the tetraploids underwent more extensive DNA demethylation in comparison with the diploids under cold stress. CHH methylation in the promoters was associated with up-regulation of related genes, whereas CG, CHG, and CHH methylation in the 3'-regions was relevant to gene down-regulation. Of note, genes involved in unsaturated fatty acids (UFAs) and jasmonate (JA) biosynthesis in the tetraploids displayed different CHH methylation in the gene flanking regions and were prominently up-regulated, consistent with greater accumulation of UFAs and JA when exposed to the cold stress. Collectively, our findings explored the difference in cold stress response between diploids and tetraploids at both transcriptional and epigenetic levels, and gained new insight into the molecular mechanisms underlying enhanced cold tolerance of the tetraploid. These results contribute to uncovering a novel regulatory role of DNA methylation in better cold tolerance of polyploids.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(5)
      
    The RNA N6-methyladenosine demethylase ALKBH9B modulates ABA responses in Arabidopsis
    Jun Tang, Junbo Yang, Qiang Lu, Qian Tang, Shuyan Chen and Guifang Jia
    J Integr Plant Biol 2022, 64 (12): 2361-2373.  
    doi: 10.1111/jipb.13394
    Abstract (Browse 208)  |   Save

    The mRNA modification N6-methyladenosine (m6A) plays vital roles in plant development and biotic and abiotic stress responses. The RNA m6A demethylase ALKBH9B can remove m6A in alfalfa mosaic virus RNA and plays roles in alfalfa mosaic virus infection in Arabidopsis. However, it is unknown whether ALKBH9B also exhibits demethylation activity and has a biological role in endogenous plant mRNA. We demonstrated here that mRNA m6A modification is induced by the phytohormone abscisic acid (ABA) and that ALKBH9B has m6A demethylation activity on endogenous mRNA. Knocking out ALKBH9B led to hypersensitivity to ABA treatment during seed germination and early seedling development. We further showed that ALKBH9B removes the m6A modification in the ABA INSENSITIVE 1 (ABI1) and BRI1-EMS-SUPPRESSOR 1 (BES1) transcripts following ABA treatment, affecting the stability of these mRNAs. Furthermore, we determined that ALKBH9B acts genetically upstream of the transcription factors ABI3 and ABI5, and its regulatory function in ABA responses depended on ABI3 and ABI5. Our findings reveal the important roles of the m6A modification in ABA responses and highlight the role of ALKBH9B-mediated m6A demethylation in regulating ABA responses post-transcriptionally.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(7)
      
    Brassinosteroid signaling regulates phosphate starvation‐induced malate secretion in plants
    Tongtong Liu, Suren Deng, Cheng Zhang, Xu Yang, Lei Shi, Fangsen Xu, Sheliang Wang and Chuang Wang
    J Integr Plant Biol 2023, 65 (5): 1099-1112.  
    DOI: 10.1111/jipb.13443
    Abstract (Browse 270)  |   Save
    Inorganic phosphate (Pi) is often limited in soils due to precipitation with iron (Fe) and aluminum (Al). To scavenge heterogeneously distributed phosphorus (P) resources, plants have evolved a local Pi signaling pathway that induces malate secretion to solubilize the occluded Fe‐P or Al‐P oxides. In this study, we show that Pi limitation impaired brassinosteroid signaling and downregulated BRASSINAZOLE‐RESISTANT 1 (BZR1) expression in Arabidopsis thaliana. Exogenous 2,4‐epibrassinolide treatment or constitutive activation of BZR1 (in the bzr1‐D mutant) significantly reduced primary root growth inhibition under Pi‐starvation conditions by downregulating ALUMINUM‐ACTIVATED MALATE TRANSPORTER 1 (ALMT1) expression and malate secretion. Furthermore, AtBZR1 competitively suppressed the activator effect of SENSITIVITY TO PROTON RHIZOTOXICITY 1 (STOP1) on ALMT1 expression and malate secretion in Nicotiana benthamiana leaves and Arabidopsis. The ratio of nuclear‐localized STOP1 and BZR1 determined ALMT1 expression and malate secretion in Arabidopsis. In addition, BZR1‐inhibited malate secretion is conserved in rice (Oryza sativa). Our findings provide insight into plant mechanisms for optimizing the secretion of malate, an important carbon resource, to adapt to Pi‐deficiency stress.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(7)
      
    The SlTPL3–SlWUS module regulates multi-locule formation in tomato by modulating auxin and gibberellin levels in the shoot apical meristem
    Shiwei Song, Binbin Huang, Zanlin Pan, Qiuxiang Zhong, Yinghua Yang, Da Chen, Lisha Zhu, Guojian Hu, Mi He, Caiyu Wu, Mohammed Zouine, Riyuan Chen, Mondher Bouzayen and Yanwei Hao
    J Integr Plant Biol 2022, 64 (11): 2150-2167.  
    doi: 10.1111/jipb.13347
    Abstract (Browse 283)  |   Save

    Malformed fruits depreciate a plant's market value. In tomato (Solanum lycopersicum), fruit malformation is associated with the multi-locule trait, which involves genes regulating shoot apical meristem (SAM) development. The expression pattern of TOPLESS3 (SlTPL3) throughout SAM development prompted us to investigate its functional significance via RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. Lower SlTPL3 transcript levels resulted in larger fruits with more locules and larger SAMs at the 5 d after germination (DAG5) stage. Differentially expressed genes in the SAM of wild-type (WT) and SlTPL3-RNAi plants, identified by transcriptome deep sequencing (RNA-seq), were enriched in the gibberellin (GA) biosynthesis and plant hormone signaling pathways. Moreover, exogenous auxin and paclobutrazol treatments rescued the multi-locule phenotype, indicating that SlTPL3 affects SAM size by mediating auxin and GA levels in the SAM. Furthermore, SlTPL3 interacted with WUSCHEL (SlWUS), which plays an important role in SAM size maintenance. We conducted RNA-seq and DNA affinity purification followed by sequencing (DAP-seq) analyses to identify the genes regulated by SlTPL3 and SlWUS in the SAM and to determine how they regulate SAM size. We detected 24 overlapping genes regulated by SlTPL3 and SlWUS and harboring an SlWUS-binding motif in their promoters. Furthermore, functional annotation revealed a notable enrichment for functions in auxin transport, auxin signal transduction, and GA biosynthesis. Dual-luciferase assays also revealed that SlTPL3 enhances SlWUS-mediated regulation (repression and activation) of SlPIN3 and SlGA2ox4 transcription, indicating that the SlTPL3–SlWUS module regulates SAM size by mediating auxin distribution and GA levels, and perturbations of this module result in enlarged SAM. These results provide novel insights into the molecular mechanism of SAM maintenance and locule formation in tomato and highlight the SlTPL3–SlWUS module as a key regulator.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(1)
      
    NUCLEAR PORE ANCHOR and EARLY IN SHORT DAYS 4 negatively regulate abscisic acid signaling by inhibiting Snf1-related protein kinase2 activity and stability in Arabidopsis
    Ya‐Nan Chang, Zhijuan Wang, Ziyin Ren, Chun‐Han Wang, Pengcheng Wang, Jian‐Kang Zhu, Xia Li and Cheng‐Guo Duan
    J Integr Plant Biol 2022, 64 (11): 2060-2074.  
    DOI: 10.1111/jipb.13349
    Abstract (Browse 234)  |   Save
    Abscisic acid (ABA) is a key regulator of plant responses to abiotic stresses, such as drought. Abscisic acid receptors and coreceptors perceive ABA to activate Snf1-related protein kinase2s (SnRK2s) that phosphorylate downstream effectors, thereby activating ABA signaling and the stress response. As stress responses come with fitness penalties for plants, it is crucial to tightly control SnRK2 kinase activity to restrict ABA signaling. However, how SnRK2 kinases are inactivated remains elusive. Here, we show that NUCLEAR PORE ANCHOR (NUA), a nuclear pore complex (NPC) component, negatively regulates ABA-mediated inhibition of seed germination and post-germination growth, and drought tolerance in Arabidopsis thaliana. The role of NUA in response to ABA depends on SnRK2.2 and SnRK2.3 for seed germination and on SnRK2.6 for drought. NUA does not directly inhibit the phosphorylation of these SnRK2s or affects their abundance. However, the NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, negatively regulates ABA signaling by directly interacting with and inhibiting SnRK2 phosphorylation and protein levels. More importantly, we demonstrated that SnRK2.6 can be SUMOylated in vitro, and ESD4 inhibits its SUMOylation. Taken together, we identified NUA and ESD4 as SnRK2 kinase inhibitors that block SnRK2 activity, and reveal a mechanism whereby NUA and ESD4 negatively regulate plant responses to ABA and drought stress possibly through SUMOylation-dependent regulation of SnRK2s.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(6)
      
    The Phytophthora effector Avh94 manipulates host jasmonic acid signaling to promote infection
    Yao Zhao, Bo Yang, Huawei Xu, Jinbin Wu, Zhiyang Xu and Yuanchao Wang
    J Integr Plant Biol 2022, 64 (11): 2199-2210.  
    DOI: 10.1111/jipb.13358
    Abstract (Browse 312)  |   Save

    The oomycete pathogen Phytophthora sojae is a causal agent of soybean root rot. Upon colonization of soybeans, P. sojae secretes various RXLR effectors to suppress host immune responses, supporting successful infection. Previous research has demonstrated that the RXLR effector Avh94 functions as a virulence effector, but the molecular mechanism underlying its role in virulence remains unknown. Here, we demonstrate that Avh94 overexpression in plants and pathogens promotes Phytophthora infection. Avh94 interacts with soybean JAZ1/2, which is a repressor of jasmonic acid (JA) signaling. Avh94 stabilizes JAZ1/2 to inhibit JA signaling and silencing of JAZ1/2 enhances soybean resistance against P. sojae. Moreover, P. sojae lines overexpressing Avh94 inhibit JA signaling. Furthermore, exogenous application of methyl jasmonate improves plant resistance to Phytophthora. Taken together, these findings suggest that P. sojae employs an RXLR effector to hijack JA signaling and thereby promote infection.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(4)
      
    A molecular framework for signaling crosstalk between jasmonate and ethylene in anthocyanin biosynthesis, trichome development, and defenses against insect herbivores in Arabidopsis
    Susheng Song, Bei Liu, Junqiao Song, Shihai Pang, Tianxue Song, Shang Gao, Yue Zhang, Huang Huang and Tiancong Qi
    J Integr Plant Biol 2022, 64 (9): 1770-1788.  
    DOI: 10.1111/jipb.13319
    Abstract (Browse 281)  |   Save

    The phytohormones ethylene (ET) and jasmonate (JA) regulate plant development, growth, and defense responses; however, the molecular basis for their signaling crosstalk is unclear. Here, we show that JA-ZIM-domain (JAZ) proteins, which repress JA signaling, repress trichome initiation/branching and anthocyanin accumulation, and inhibit the transcriptional activity of the basic helix-loop-helix (bHLH)-MYB members (GLABRA3 (GL3)-GL1 and TRANSPARENT TESTA 8 (TT8)-MYB75) of WD-repeat/bHLH/MYB (WBM) complexes. The ET-stabilized transcription factors ETHYLENE-INSENSITIVE3 (EIN3) and EIN3-LIKE1 (EIL1) were found to bind to several members of WBM complexes, including GL3, ENHANCER OF GLABRA3 (EGL3), TT8, GL1, MYB75, and TRANSPARENT TESTA GLABRA1 (TTG1). This binding repressed the transcriptional activity of the bHLH-MYB proteins and inhibited anthocyanin accumulation, trichome formation, and defenses against insect herbivores while promoting root hair formation. Conversely, the JA-activated bHLH members GL3, EGL3, and TT8 of WBM complexes were able to interact with and attenuate the transcriptional activity of EIN3/EIL1 at the HOOKLESS1 promoter, and their overexpression inhibited apical hook formation. Thus, this study demonstrates a molecular framework for signaling crosstalk between JA and ET in plant development, secondary metabolism, and defense responses.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(12)
      
    OsCPL3 is involved in brassinosteroid signaling by regulating OsGSK2 stability
    Luping Gong, Shenghao Liao, Wen Duan, Yongqiang Liu, Dongmei Zhu, Xiaosheng Zhou, Baoping Xue, Chengcai Chu and Yun‐Kuan Liang
    J Integr Plant Biol 2022, 64 (8): 1560-1574.  
    DOI: 10.1111/jipb.13311
    Abstract (Browse 384)  |   Save

    Glycogen synthase kinase 3 (GSK3) proteins play key roles in brassinosteroid (BR) signaling during plant growth and development by phosphorylating various substrates. However, how GSK3 protein stability and activity are themselves modulated is not well understood. Here, we demonstrate in vitro and in vivo that C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 (OsCPL3), a member of the RNA Pol II CTD phosphatase-like family, physically interacts with OsGSK2 in rice (Oryza sativa). OsCPL3 expression was widely detected in various tissues and organs including roots, leaves and lamina joints, and was induced by exogenous BR treatment. OsCPL3 localized to the nucleus, where it dephosphorylated OsGSK2 at the Ser-222 and Thr-284 residues to modulate its protein turnover and kinase activity, in turn affecting the degradation of BRASSINAZOLE-RESISTANT 1 (BZR1) and BR signaling. Loss of OsCPL3 function resulted in higher OsGSK2 abundance and lower OsBZR1 levels, leading to decreased BR responsiveness and alterations in plant morphology including semi-dwarfism, leaf erectness and grain size, which are of fundamental importance to crop productivity. These results reveal a previously unrecognized role for OsCPL3 and add another layer of complexity to the tightly controlled BR signaling pathway in plants.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(4)
      
    The divergence of brassinosteroid sensitivity between rice subspecies involves natural variation conferring altered internal auto-binding of OsBSK2
    Wenchao Yin, Lulu Li, Zhikun Yu, Fan Zhang, Dapu Liu, Hongkai Wu, Mei Niu, Wenjing Meng, Xiaoxing Zhang, Nana Dong, Yanzhao Yang, Jihong Liu, Yongqiang Liu, Guoxia Zhang, Jianlong Xu, Shimei Wang, Chengcai Chu, Qian Qian and Hongning Tong
    J Integr Plant Biol 2022, 64 (8): 1614-1630.  
    doi: 10.1111/jipb.13322
    Abstract (Browse 423)  |   Save

    Japonica/geng and indica/xian are two major rice (Oryza sativa) subspecies with multiple divergent traits, but how these traits are related and interact within each subspecies remains elusive. Brassinosteroids (BRs) are a class of steroid phytohormones that modulate many important agronomic traits in rice. Here, using different physiological assays, we revealed that japonica rice exhibits an overall lower BR sensitivity than indica. Extensive screening of BR signaling genes led to the identification of a set of genes distributed throughout the primary BR signaling pathway with divergent polymorphisms. Among these, we demonstrate that the C38/T variant in BR Signaling Kinase2 (OsBSK2), causing the amino acid change P13L, plays a central role in mediating differential BR signaling in japonica and indica rice. OsBSK2L13 in indica plays a greater role in BR signaling than OsBSK2P13 in japonica by affecting the auto-binding and protein accumulation of OsBSK2. Finally, we determined that OsBSK2 is involved in a number of divergent traits in japonica relative to indica rice, including grain shape, tiller number, cold adaptation, and nitrogen-use efficiency. Our study suggests that the natural variation in OsBSK2 plays a key role in the divergence of BR signaling, which underlies multiple divergent traits between japonica and indica.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(3)
      
    RING-box proteins regulate leaf senescence and stomatal closure via repression of ABA transporter gene ABCG40
    Yun Qi Wei, Jun Jie Yuan, Chen Chen Xiao, Gui Xin Li, Jing Ying Yan, Shao Jian Zheng and Zhong Jie Ding
    J Integr Plant Biol 2022, 64 (5): 979-994.  
    DOI: 10.1111/jipb.13247
    Abstract (Browse 341)  |   Save

    Plant hormone abscisic acid (ABA) plays an indispensable role in the control of leaf senescence, during which ABA signaling depends on its biosynthesis. Nevertheless, the role of ABA transport in leaf senescence remains unknown. Here, we identified two novel RING-box protein-encoding genes UBIQUITIN LIGASE of SENESCENCE 1 and 2 (ULS1 and ULS2) involved in leaf senescence. Lack of ULS1 and ULS2 accelerates leaf senescence, which is specifically promoted by ABA treatment. Furthermore, the expression of senescence-related genes is significantly affected in mature leaves of uls1/uls2 double mutant (versus wild type (WT)) in an ABA-dependent manner, and the ABA content is substantially increased. ULS1 and ULS2 are mainly expressed in the guard cells and aging leaves, and the expression is induced by ABA. Further RNA-seq and quantitative proteomics of ubiquitination reveal that ABA transporter ABCG40 is highly expressed in uls1/uls2 mutant versus WT, though it is not the direct target of ULS1/2. Finally, we show that the acceleration of leaf senescence, the increase of leaf ABA content, and the promotion of stomatal closure in uls1/usl2 mutant are suppressed by abcg40 loss-of-function mutation. These results indicate that ULS1 and ULS2 function in feedback inhibition of ABCG40-dependent ABA transport during ABA-induced leaf senescence and stomatal closure.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(8)
      
    The jasmonate-induced bHLH gene SlJIG functions in terpene biosynthesis and resistance to insects and fungus
    Yunyun Cao, Lun Liu, Kangsheng Ma, Wenjing Wang, Hongmei Lv, Ming Gao, Xinman Wang, Xichun Zhang, Shuxin Ren, Na Zhang and Yang‐Dong Guo
    J Integr Plant Biol 2022, 64 (5): 1102-1115.  
    DOI: 10.1111/jipb.13248
    Abstract (Browse 429)  |   Save

    Jasmonic acid (JA) is a key regulator of plant defense responses. Although the transcription factor MYC2, the master regulator of the JA signaling pathway, orchestrates a hierarchical transcriptional cascade that regulates the JA responses, only a few transcriptional regulators involved in this cascade have been described. Here, we identified the basic helix-loop-helix (bHLH) transcription factor gene in tomato (Solanum lycopersicum), METHYL JASMONATE (MeJA)-INDUCED GENE (SlJIG), the expression of which was strongly induced by MeJA treatment. Genetic and molecular biology experiments revealed that SlJIG is a direct target of MYC2. SlJIG knockout plants generated by gene editing had lower terpene contents than the wild type from the lower expression of TERPENE SYNTHASE (TPS) genes, rendering them more appealing to cotton bollworm (Helicoverpa armigera). Moreover, SlJIG knockouts exhibited weaker JA-mediated induction of TPSs, suggesting that SlJIG may participate in JA-induced terpene biosynthesis. Knocking out SlJIG also resulted in attenuated expression of JA-responsive defense genes, which may contribute to the observed lower resistance to cotton bollworm and to the fungus Botrytis cinerea. We conclude that SlJIG is a direct target of MYC2, forms a MYC2-SlJIG module, and functions in terpene biosynthesis and resistance against cotton bollworm and B. cinerea.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(19)
      
    Regulation of cytokinin biosynthesis using PtRD26pro-IPT module improves drought tolerance through PtARR10-PtYUC4/5-mediated reactive oxygen species removal in Populus
    Hou‐Ling Wang, Qi Yang, Shuya Tan, Ting Wang, Yi Zhang, Yanli Yang, Weilun Yin, Xinli Xia, Hongwei Guo and Zhonghai Li
    J Integr Plant Biol 2022, 64 (3): 771-786.  
    DOI: 10.1111/jipb.13218
    Abstract (Browse 372)  |   Save
    Drought is a critical environmental factor which constrains plant survival and growth. Genetic engineering provides a credible strategy to improve drought tolerance of plants. Here, we generated transgenic poplar lines expressing the isopentenyl transferase gene (IPT) under the driver of PtRD26 promoter (PtRD26pro-IPT). PtRD26 is a senescence and drought-inducible NAC transcription factor. PtRD26pro-IPT plants displayed multiple phenotypes, including improved growth and drought tolerance. Transcriptome analysis revealed that auxin biosynthesis pathway was activated in the PtRD26pro-IPT plants, leading to an increase in auxin contents. Biochemical analysis revealed that ARABIDOPSIS RESPONSE REGULATOR10 (PtARR10), one of the type-B ARR transcription factors in the cytokinin pathway, was induced in PtRD26pro-IPT plants and directly regulated the transcripts of YUCCA4 (PtYUC4) and YUCCA5 (PtYUC5), two enzymes in the auxin biosynthesis pathway. Overexpression of PtYUC4 enhanced drought tolerance, while simultaneous silencing of PtYUC4/5 evidently attenuated the drought tolerance of PtRD26pro-IPT plants. Intriguingly, PtYUC4/5 displayed a conserved thioredoxin reductase activity that is required for drought tolerance by deterring reactive oxygen species accumulation. Our work reveals the molecular basis of cytokinin and auxin interactions in response to environmental stresses, and shed light on the improvement of drought tolerance without a growth penalty in trees by molecular breeding.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(8)
      
    ERF1 delays flowering through direct inhibition of FLOWERING LOCUS T expression in Arabidopsis
    Yanli Chen, Liping Zhang, Haiyan Zhang, Ligang Chen and Diqiu Yu
    J Integr Plant Biol 2021, 63 (10): 1712-1723.  
    DOI: 10.1111/jipb.13144
    Abstract (Browse 452)  |   Save
    ETHYLENE RESPONSE FACTOR1 (ERF1) is a key component in ethylene signaling, playing crucial roles in both biotic and abiotic stress responses. Here, we demonstrate that ERF1 also has an important role during floral initiation in Arabidopsis thaliana. Knockdown or knockout of ERF1 accelerated floral initiation, whereas overexpression of ERF1 dramatically delayed floral transition. These contrasting phenotypes were correlated with opposite transcript levels of FLOWERING LOCUS T (FT). Chromatin immunoprecipitation (ChIP) assays revealed that ERF1 associates with genomic regions of the FT gene to repress its transcription. ft-10/ERF1RNAi plants showed a similar flowering phenotype to the ft-10 mutant, whereas the flowering of FTox/ERF1ox mimicked that of FTox plants, suggesting that ERF1 acts upstream of FT during floral initiation. Similarly, altered floral transition in ethylene-related mutants was also correlated with FT expression. Further analysis suggested that ERF1 also participates in delay in flowering-time control mediated by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Thus, ERF1 may act as a negative modulator of flowering-time control by repressing FT transcription in Arabidopsis.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Brassinosteroids inhibit miRNA-mediated translational repression by decreasing AGO1 on the endoplasmic reticulum
    Taiyun Wang, Yanhua Zheng, Qi Tang, Songxiao Zhong, Wei Su and Binglian Zheng
    J Integr Plant Biol 2021, 63 (8): 1475-1490.  
    doi: 10.1111/jipb.13139
    Abstract (Browse 281)  |   Save
    Translational repression is a conserved mechanism in microRNA (miRNA)-guided gene silencing. In Arabidopsis, ARGONAUTE1 (AGO1), the major miRNA effector, localizes in the cytoplasm for mRNA cleavage and at the endoplasmic reticulum (ER) for translational repression of target genes. However, the mechanism underlying miRNA-mediated translational repression is poorly understood. In particular, how the subcellular partitioning of AGO1 is regulated is largely unexplored. Here, we show that the plant hormone brassinosteroids (BRs) inhibit miRNA-mediated translational repression by negatively regulating the distribution of AGO1 at the ER in Arabidopsis thaliana. We show that the protein levels rather than the transcript levels of miRNA target genes were reduced in BR-deficient mutants but increased under BR treatments. The localization of AGO1 at the ER was significantly decreased under BR treatments while it was increased in the BR-deficient mutants. Moreover, ROTUNDIFOLIA3 (ROT3), an enzyme involved in BR biosynthesis, co-localizes with AGO1 at the ER and interacts with AGO1 in a GW motif-dependent manner. Complementation analysis showed that the AGO1–ROT3 interaction is necessary for the function of ROT3. Our findings provide new clues to understand how miRNA-mediated gene silencing is regulated by plant endogenous hormones.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Rice SPL10 positively regulates trichome development through expression of HL6 and auxin-related genes
    Jinjie Li, Bo Tang, Yingxiu Li, Chenguang Li, Minjie Guo, Haiyang Chen, Shichen Han, Jin Li, Qijin Lou, Wenqiang Sun, Peng Wang, Haifeng Guo, Wei Ye, Zhanying Zhang, Hongliang Zhang, Sibin Yu, Long Zhang and Zichao Li
    J Integr Plant Biol 2021, 63 (8): 1521-1537.  
    DOI: 10.1111/jipb.13140
    Abstract (Browse 414)  |   Save
    Trichomes function in plant defenses against biotic and abiotic stresses; examination of glabrous lines, which lack trichomes, has revealed key aspects of trichome development and function. Tests of allelism in 51 glabrous rice (Oryza sativa) accessions collected worldwide identified OsSPL10 and OsWOX3B as regulators of trichome development in rice. Here, we report that OsSPL10 acts as a transcriptional regulator controlling trichome development. Haplotype and transient expression analyses revealed that variation in the approximately 700-bp OsSPL10 promoter region is the primary cause of the glabrous phenotype in the indica cultivar WD-17993. Disruption of OsSPL10 by genome editing decreased leaf trichome density and length in the NIL-HL6 background. Plants with genotype OsSPL10WD-17993/HL6 generated by crossing WD-17993 with NIL-HL6 also had fewer trichomes in the glumes. HAIRY LEAF6 (HL6) encodes another transcription factor that regulates trichome initiation and elongation, and OsSPL10 directly binds to the HL6 promoter to regulate its expression. Moreover, the transcript levels of auxin-related genes, such as OsYUCCA5 and OsPIN-FORMED1b, were altered in OsSPL10 overexpression and RNAi transgenic lines. Feeding tests using locusts (Locusta migratoria) demonstrated that non-glandular trichomes affect feeding by this herbivore. Our findings provide a molecular framework for trichome development and an ecological perspective on trichome functions.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Primary root and root hair development regulation by OsAUX4 and its participation in the phosphate starvation response
    Rigui Ye, Yunrong Wu, Zhenyu Gao, Hao Chen, Lixia Jia, Dongming Li, Xugang Li, Qian Qian and Yanhua Qi
    J Integr Plant Biol 2021, 63 (8): 1555-1567.  
    DOI: 10.1111/jipb.13142
    Abstract (Browse 285)  |   Save
    Among the five members of AUX1/LAX genes coding for auxin carriers in rice, only OsAUX1 and OsAUX3 have been reported. To understand the function of the other AUX1/LAX genes, two independent alleles of osaux4 mutants, osaux4-1 and osaux4-2, were constructed using the CRISPR/Cas9 editing system. Homozygous osaux4-1 or osaux4-2 exhibited shorter primary root (PR) and longer root hair (RH) compared to the wild-type Dongjin (WT/DJ), and lost response to indoleacetic acid (IAA) treatment. OsAUX4 is intensively expressed in roots and localized on the plasma membrane, suggesting that OsAUX4 might function in the regulation of root development. The decreased meristem cell division activity and the downregulated expression of cell cycle genes in root apices of osaux4 mutants supported the hypothesis that OsAUX4 positively regulates PR elongation. OsAUX4 is expressed in RH, and osaux4 mutants showing longer RH compared to WT/DJ implies that OsAUX4 negatively regulates RH development. Furthermore, osaux4 mutants are insensitive to Pi starvation (-Pi) and OsAUX4 effects on the -Pi response is associated with altered expression levels of Pi starvation-regulated genes, and auxin distribution/contents. This study revealed that OsAUX4 not only regulates PR and RH development but also plays a regulatory role in crosstalk between auxin and -Pi signaling.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Ethylene-induced stomatal closure is mediated via MKK1/3–MPK3/6 cascade to EIN2 and EIN3
    Teng‐Yue Zhang, Zhong‐Qi Li, Yu‐Dong Zhao, Wen‐Jie Shen, Meng‐Shu Chen, Hai‐Quan Gao, Xiao‐Min Ge, Hui‐Qin Wang, Xue Li and Jun‐Min He
    J Integr Plant Biol 2021, 63 (7): 1324-1340.  
    DOI: 10.1111/jipb.13083
    Abstract (Browse 370)  |   Save
    Mitogen-activated protein kinases (MPKs) play essential roles in guard cell signaling, but whether MPK cascades participate in guard cell ethylene signaling and interact with hydrogen peroxide (H2O2), nitric oxide (NO), and ethylene-signaling components remain unclear. Here, we report that ethylene activated MPK3 and MPK6 in the leaves of wild-type Arabidopsis thaliana as well as ethylene insensitive2 (ein2), ein3, nitrate reductase1 (nia1), and nia2 mutants, but this effect was impaired in ethylene response1 (etr1), nicotinamide adenine dinucleotide phosphate oxidase AtrbohF, mpk kinase1 (mkk1), and mkk3 mutants. By contrast, the constitutive triple response1 (ctr1) mutant had constitutively active MPK3 and MPK6. Yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays indicated that MPK3 and MPK6 physically interacted with MKK1, MKK3, and the C-terminal region of EIN2 (EIN2 CEND). mkk1, mkk3, mpk3, and mpk6 mutants had typical levels of ethylene-induced H2O2 generation but impaired ethylene-induced EIN2 CEND cleavage and nuclear translocation, EIN3 protein accumulation, NO production in guard cells, and stomatal closure. These results show that the MKK1/3–MPK3/6 cascade mediates ethylene-induced stomatal closure by functioning downstream of ETR1, CTR1, and H2O2 to interact with EIN2, thereby promoting EIN3 accumulation and EIN3-dependent NO production in guard cells.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Protein farnesylation negatively regulates brassinosteroid signaling via reducing BES1 stability in Arabidopsis thaliana
    Zengxiu Feng, Hongyong Shi, Minghui Lv, Yuang Ma and Jia Li
    J Integr Plant Biol 2021, 63 (7): 1353-1366.  
    doi: 10.1111/jipb.13093
    Abstract (Browse 329)  |   Save
    Brassinosteroids (BRs) are a group of steroidal phytohormones, playing critical roles in almost all physiological aspects during the life span of a plant. In Arabidopsis, BRs are perceived at the cell surface, triggering a reversible phosphorylation-based signaling cascade that leads to the activation and nuclear accumulation of a family of transcription factors, represented by BES1 and BZR1. Protein farnesylation is a type of post-translational modification, functioning in many important cellular processes. Previous studies demonstrated a role of farnesylation in BR biosynthesis via regulating the endoplasmic reticulum localization of a key bassinolide (BL) biosynthetic enzyme BR6ox2. Whether such a process is also involved in BR signaling is not understood. Here, we demonstrate that protein farnesylation is involved in mediating BR signaling in Arabidopsis. A loss-of-function mutant of ENHANCED RESPONSE TO ABA 1 (ERA1), encoding a β subunit of the protein farnesyl transferase holoenzyme, can alter the BL sensitivity of bak1-4 from a reduced to a hypersensitive level. era1 can partially rescue the BR defective phenotype of a heterozygous mutant of bin2-1, a gain-of-function mutant of BIN2 which encodes a negative regulator in the BR signaling. Our genetic and biochemical analyses revealed that ERA1 plays a significant role in regulating the protein stability of BES1.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    TMK4 receptor kinase negatively modulates ABA signaling by phosphorylating ABI2 and enhancing its activity
    Lan Li, Bin Li, Sirui Zhu, Long Wang, Limei Song, Jia Chen, Zhenhua Ming, Xuanming Liu, Xiushan Li and Feng Yu
    J Integr Plant Biol 2021, 63 (6): 1161-1178.  
    doi: 10.1111/jipb.13096
    Abstract (Browse 396)  |   Save
    In plants, clade A type 2C protein phosphatases (PP2CAs) have emerged as major players in abscisic acid (ABA)-regulated stress responses by inhibiting protein kinase activity. However, how different internal and external environmental signals modulate the activity of PP2CAs are not well known. The transmembrane kinase (TMK) protein 4 (TMK4), one member of a previously identified receptor kinase subfamily on the plasma membrane that plays vital roles in plant cell growth, directly interacts with PP2CAs member (ABA-Insensitive 2, ABI2). tmk4 mutant is hypersensitive to ABA in both ABA-inhibited seed germination and primary root growth, indicating that TMK4 is a negative regulator in ABA signaling pathway. Further analyses indicate that TMK4 phosphorylates ABI2 at three conserved Ser residues, thus enhancing the activity of ABI2. The phosphorylation-mimic ABI2S139DS140DS266D can complement but non-phosphorylated form ABI2S139AS140AS266A cannot complement ABA hypersensitive phenotype of the loss-of-function mutant abi1-2abi2-2. This study provides a previously unidentified mechanism for positively regulating ABI2 by a plasma membrane protein kinase.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Light participates in the auxin‐dependent regulation of plant growth
    Bingsheng Lv, Jiayong Zhu, Xiangpei Kong and Zhaojun Ding
    J Integr Plant Biol 2021, 63 (5): 819-822.  
    doi: 10.1111/jipb.13036
    Abstract (Browse 367)  |   Save
    Light is the energy source for plant photosynthesis and influences plant growth and development. Through multiple photoreceptors, plant interprets light signals through various downstream phytohormones such as auxin. Recently, Chen et al. (2020) uncover a new layer of regulation in IPyA pathway of auxin biosynthesis by light. Here we highlight recent studies about how light controls plant growth through regulating auxin biosynthesis and signaling.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    The novel peptide NbPPI1 identified from Nicotiana benthamiana triggers immune responses and enhances resistance against Phytophthora pathogens
    Qujiang Wen, Manli Sun, Xianglan Kong, Yang Yang, Qiang Zhang, Guiyan Huang, Wenqin Lu, Wanyue Li, Yuling Meng and Weixing Shan
    J Integr Plant Biol 2021, 63 (5): 961-976.  
    DOI: 10.1111/jipb.13033
    Abstract (Browse 344)  |   Save
    In plants, recognition of small secreted peptides, such as damage/danger‐associated molecular patterns (DAMPs), regulates diverse processes, including stress and immune responses. Here, we identified an SGPS (Ser‐Gly‐Pro‐Ser) motif‐containing peptide, Nicotiana tabacum NtPROPPI, and its two homologs in Nicotiana benthamiana, NbPROPPI1 and NbPROPPI2. Phytophthora parasitica infection and salicylic acid (SA) treatment induced NbPROPPI1/2 expression. Moreover, SignalP predicted that the 89‐amino acid NtPROPPI includes a 24‐amino acid N‐terminal signal peptide and NbPROPPI1/2‐GFP fusion proteins were mainly localized to the periplasm. Transient expression of NbPROPPI1/2 inhibited P. parasitica colonization, and NbPROPPI1/2 knockdown rendered plants more susceptible to P. parasitica. An eight‐amino‐acid segment in the NbPROPPI1 C‐terminus was essential for its immune function and a synthetic 20‐residue peptide, NbPPI1, derived from the C‐terminus of NbPROPPI1 provoked significant immune responses in N. benthamiana. These responses led to enhanced accumulation of reactive oxygen species, activation of mitogen‐activated protein kinases, and up‐regulation of the defense genes Flg22‐induced receptor‐like kinase (FRK) and WRKY DNA‐binding protein 33 (WRKY33). The NbPPI1‐induced defense responses require Brassinosteroid insensitive 1‐associated receptor kinase 1 (BAK1). These results suggest that NbPPI1 functions as a DAMP in N. benthamiana; this novel DAMP provides a potentially useful target for improving plant resistance to Pytophthora pathogens.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Induction of jasmonic acid biosynthetic genes inhibits Arabidopsis growth in response to low boron
    Yupu Huang, Sheliang Wang, Chuang Wang, Guangda Ding, Hongmei Cai, Lei Shi and Fangsen Xu
    J Integr Plant Biol 2021, 63 (5): 937-948.  
    doi: 10.1111/jipb.13048
    Abstract (Browse 355)  |   Save
    The essential micronutrient boron (B) has key roles in cell wall integrity and B deficiency inhibits plant growth. The role of jasmonic acid (JA) in plant growth inhibition under B deficiency remains unclear. Here, we report that low B elevates JA biosynthesis in Arabidopsis thaliana by inducing the expression of JA biosynthesis genes. Treatment with JA inhibited plant growth and, a JA biosynthesis inhibitor enhanced plant growth, indicating that the JA induced by B deficiency affects plant growth. Furthermore, examination of the JA signaling mutants jasmonate resistant1, coronatine insensitive1‐2, and myc2 showed that JA signaling negatively regulates plant growth under B deficiency. We identified a low‐B responsive transcription factor, ERF018, and used yeast one‐hybrid assays and transient activation assays in Nicotiana benthamiana leaf cells to demonstrate that ERF018 activates the expression of JA biosynthesis genes. ERF018 overexpression (OE) lines displayed stunted growth and up‐regulation of JA biosynthesis genes under normal B conditions, compared to Col‐0 and the difference between ERF018 OE lines and Col‐0 diminished under low B. These results suggest that ERF018 enhances JA biosynthesis and thus negatively regulates plant growth. Taken together, our results highlight the importance of JA in the effect of low B on plant growth.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Salicylic acid and ethylene coordinately promote leaf senescence
    Xiaodong Yu, Yiren Xu and Shunping Yan
    J Integr Plant Biol 2021, 63 (5): 823-827.  
    doi: 10.1111/jipb.13074
    Abstract (Browse 478)  |   Save
    Leaf senescence is an intrinsic biological process of plants. The phytohormones salicylic acid (SA) and ethylene (ET) are known to promote senescence. However, their relationship in this process is still unclear. We found that EIN3 and EIL1, two key transcription factors in ET signaling, are required for SA‐induced leaf senescence in Arabidopsis. Furthermore, ET enhances the effect of SA in promoting senescence. Biochemical studies revealed that NPR1, the master regulator of SA signaling, interacts with EIN3 to promote its transcriptional activity. Our study suggests that SA and ET function coordinately in senescence, which is in contrast to their antagonistic crosstalk in other biological processes.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Ethylene and salicylic acid synergistically accelerate leaf senescence in Arabidopsis
    Chaoqi Wang, Shouyi Dai, Zhong‐Lin Zhang, Wenqing Lao, Ruiying Wang, Xianqing Meng and Xin Zhou
    J Integr Plant Biol 2021, 63 (5): 828-833.  
    doi: 10.1111/jipb.13075
    Abstract (Browse 480)  |   Save
    The phytohormones ethylene and salicylic acid (SA) have long been known to promote senescence, but their interplay during this process remains elusive. Here we report the synergistic effects of ethylene and SA on promoting leaf senescence in Arabidopsis. EIN3, a key transcription factor of ethylene signaling, physically interacted with the core SA signaling regulator NPR1 in senescing leaves. EIN3 and NPR1 synergistically promoted the expression of the senescence‐associated genes ORE1 and SAG29. The senescence phenotype was more delayed for the ein3eil1npr1 triple mutant than ein3eil1 or npr1 with ethylene or/and SA treatment. NPR1‐promoted leaf senescence may depend on functional EIN3/EIL1.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Function identification of MdTIR1 in apple root growth benefited from the predicted MdPPI network
    Lin Liu, Zipeng Yu, Yang Xu, Cheng Guo, Lei Zhang, Changai Wu, Guodong Yang, Jinguang Huang, Kang Yan, Huairui Shu, Chengchao Zheng and Shizhong Zhang
    J Integr Plant Biol 2021, 63 (4): 723-739.  
    DOI: 10.1111/jipb.12996
    Abstract (Browse 337)  |   Save
    Protein–protein interaction (PPI) network analysis is an effective method to identify key proteins during plant development, especially in species for which basic molecular research is lacking, such as apple (Malus domestica). Here, an MdPPI network containing 30 806 PPIs was inferred in apple and its quality and reliability were rigorously verified. Subsequently, a root‐growth subnetwork was extracted to screen for critical proteins in root growth. Because hormone‐related proteins occupied the largest proportion of critical proteins, a hormone‐related sub‐subnetwork was further extracted from the root‐growth subnetwork. Among these proteins, auxin‐related M. domestica TRANSPORT INHIBITOR RESISTANT 1 (MdTIR1) served as the central, high‐degree node, implying that this protein exerts essential roles in root growth. Furthermore, transgenic apple roots overexpressing an MdTIR1 transgene displayed increased primary root elongation. Expression analysis showed that MdTIR1 significantly upregulated auxin‐responsive genes in apple roots, indicating that it mediates root growth in an auxin‐dependent manner. Further experimental validation revealed that MdTIR1 interacted with and accelerated the degradation of MdIAA28, MdIAA43, and MdIAA46. Thus, MdTIR1‐mediated degradation of MdIAAs is critical in auxin signal transduction and root growth regulation in apple. Moreover, our network analysis and high‐degree node screening provide a novel research technique for more generally characterizing molecular mechanisms.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    ABNORMAL SHOOT 6 interacts with KATANIN 1 and SHADE AVOIDANCE 4 to promote cortical microtubule severing and ordering in Arabidopsis
    Yuanfeng Li, Meng Deng, Haofeng Liu, Yan Li, Yu Chen, Min Jia, Hui Xue, Jingxia Shao, Jun Zhao, Yafei Qi, Lijun An, Fei Yu and Xiayan Liu
    J Integr Plant Biol 2021, 63 (4): 646-661.  
    DOI: 10.1111/jipb.13003
    Abstract (Browse 461)  |   Save
    Plant interphase cortical microtubules (cMTs) mediate anisotropic cell expansion in response to environmental and developmental cues. In Arabidopsis thaliana, KATANIN 1 (KTN1), the p60 catalytic subunit of the conserved MT‐severing enzyme katanin, is essential for cMT ordering and anisotropic cell expansion. However, the regulation of KTN1‐mediated cMT severing and ordering remains unclear. In this work, we report that the Arabidopsis IQ67 DOMAIN (IQD) family gene ABNORMAL SHOOT 6 (ABS6) encodes a MT‐associated protein. Overexpression of ABS6 leads to elongated cotyledons, directional pavement cell expansion, and highly ordered transverse cMT arrays. Genetic suppressor analysis revealed that ABS6‐mediated cMT ordering is dependent on KTN1 and SHADE AVOIDANCE 4 (SAV4). Live imaging of cMT dynamics showed that both ABS6 and SAV4 function as positive regulators of cMT severing. Furthermore, ABS6 directly interacts with KTN1 and SAV4 and promotes their recruitment to the cMTs. Finally, analysis of loss‐of‐function mutant combinations showed that ABS6, SAV4, and KTN1 work together to ensure the robust ethylene response in the apical hook of dark‐grown seedlings. Together, our findings establish ABS6 and SAV4 as positive regulators of cMT severing and ordering, and highlight the role of cMT dynamics in fine‐tuning differential growth in plants.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    The pre‐mRNA splicing factor RDM16 regulates root stem cell maintenance in Arabidopsis
    Bingsheng Lv, Kongqin Hu, Te Tian, Kaijing Wei, Feng Zhang, Yuebin Jia, Huiyu Tian and Zhaojun Ding
    J Integr Plant Biol 2021, 63 (4): 662-678.  
    DOI: 10.1111/jipb.13006
    Abstract (Browse 457)  |   Save
    Pre‐mRNA (messenger RNA) splicing participates in the regulation of numerous biological processes in plants. For example, alternative splicing shapes transcriptomic responses to abiotic and biotic stress, and controls developmental programs. However, no study has revealed a role for splicing in maintaining the root stem cell niche. Here, a screen for defects in root growth in Arabidopsis thaliana identified an ethyl methane sulfonate mutant defective in pre‐mRNA splicing (rdm16‐4). The rdm16‐4 mutant displays a short‐root phenotype resulting from fewer cells in the root apical meristem. The PLETHORA1 (PLT1) and PLT2 transcription factor genes are important for root development and were alternatively spliced in rdm16‐4 mutants, resulting in a disordered root stem cell niche and retarded root growth. The root cap of rdm16‐4 contained reduced levels of cytokinins, which promote differentiation in the developing root. This reduction was associated with the alternative splicing of genes encoding cytokinin signaling factors, such as ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN5 and ARABIDOPSIS RESPONSE REGULATORS (ARR1, ARR2, and ARR11). Furthermore, expression of the full‐length coding sequence of ARR1 or exogenous cytokinin application partially rescued the short‐root phenotype of rdm16‐4. This reveals that the RDM16‐mediated alternative splicing of cytokinin signaling components contributes to root growth.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    AtNSF regulates leaf serration by modulating intracellular trafficking of PIN1 in Arabidopsis thaliana
    Li Ping Tang, Yi Yang, Hui Wang, Lixin Li, Le Liu, Yu Liu, Jinfeng Yuan, Xiang Yu Zhao, Klaus Palme, Ying Hua Su and Xugang Li
    J Integr Plant Biol 2021, 63 (4): 737-755.  
    DOI: 10.1111/jipb.13043
    Abstract (Browse 314)  |   Save
    In eukaryotes, N‐ethylmaleimide‐sensitive factor (NSF) is a conserved AAA+ATPase and a key component of the membrane trafficking machinery that promotes the fusion of secretory vesicles with target membranes. Here, we demonstrate that the Arabidopsis thaliana genome contains a single copy of NSF, AtNSF, which plays an essential role in the regulation of leaf serration. The AtNSF knock‐down mutant, atnsf‐1, exhibited more serrations in the leaf margin. Moreover, polar localization of the PIN‐FORMED1 (PIN1) auxin efflux transporter was diffuse around the margins of atnsf‐1 leaves and root growth was inhibited in the atnsf‐1 mutant. More PIN1‐GFP accumulated in the intracellular compartments of atnsf‐1 plants, suggesting that AtNSF is required for intracellular trafficking of PIN between the endosome and plasma membrane. Furthermore, the serration phenotype was suppressed in the atnsf‐1 pin1‐8 double mutant, suggesting that AtNSF is required for PIN1‐mediated polar auxin transport to regulate leaf serration. The CUP‐SHAPED COTYLEDON2 (CUC2) transcription factor gene is up‐regulated in atnsf‐1 plants and the cuc2‐3 single mutant exhibits smooth leaf margins, demonstrating that AtNSF also functions in the CUC2 pathway. Our results reveal that AtNSF regulates the PIN1‐generated auxin maxima with a CUC2‐mediated feedback loop to control leaf serration.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in Arabidopsis
    Pengcheng Guo, Leelyn Chong, Fangming Wu, Chuan‐Chih Hsu, Chuanyou Li, Jian‐Kang Zhu and Yingfang Zhu
    J Integr Plant Biol 2021, 63 (4): 802-815.  
    DOI: 10.1111/jipb.13062
    Abstract (Browse 351)  |   Save
    MED25 has been implicated as a negative regulator of the abscisic acid (ABA) signaling pathway. However, it is unclear whether other Mediator subunits could associate with MED25 to participate in the ABA response. Here, we used affinity purification followed by mass spectrometry to uncover Mediator subunits that associate with MED25 in transgenic plants. We found that at least 26 Mediator subunits, belonging to the head, middle, tail, and CDK8 kinase modules, were co‐purified with MED25 in vivo. Interestingly, the tail module subunit MED16 was identified to associate with MED25 under both mock and ABA treatments. We further showed that the disruption of MED16 led to reduced ABA sensitivity compared to the wild type. Transcriptomic analysis revealed that the expression of several ABA‐responsive genes was significantly lower in med16 than those in wild type. Furthermore, we discovered that MED16 may possibly compete with MED25 to interact with the key transcription factor ABA INSENSITIVE 5 (ABI5) to positively regulate ABA signaling. Consistently, med16 and med25 mutants displayed opposite phenotypes in ABA response, cuticle permeability, and differential ABI5‐mediated EM1 and EM6 expression. Together, our data indicate that MED16 and MED25 differentially regulate ABA signaling by antagonistically affecting ABI5‐mediated transcription in Arabidopsis.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    N4‐methylcytidine ribosomal RNA methylation in chloroplasts is crucial for chloroplast function, development, and abscisic acid response in Arabidopsis
    Le Nguyen Tieu Ngoc, Su Jung Park, Trinh Thi Huong, Kwang Ho Lee and Hunseung Kang
    J Integr Plant Biol 2021, 63 (3): 570-582.  
    doi: 10.1111/jipb.13009
    Abstract (Browse 333)  |   Save
    Although the essential role of messenger RNA methylation in the nucleus is increasingly understood, the nature of ribosomal RNA (rRNA) methyltransferases and the role of rRNA methylation in chloroplasts remain largely unknown. A recent study revealed that CMAL (for Chloroplast mr aW‐ Like) is a chloroplast‐localized rRNA methyltransferase that is responsible for N4‐methylcytidine (m4C) in 16S chloroplast rRNA in Arabidopsis thaliana. In this study, we further examined the role of CMAL in chloroplast biogenesis and function, development, and hormone response. The cmal mutant showed reduced chlorophyll biosynthesis, photosynthetic activity, and growth‐defect phenotypes, including severely stunted stems, fewer siliques, and lower seed yield. The cmal mutant was hypersensitive to chloroplast translation inhibitors, such as lincomycin and erythromycin, indicating that the m4C‐methylation defect in the 16S rRNA leads to a reduced translational activity in chloroplasts. Importantly, the stunted stem of the cmal mutant was partially rescued by exogenous gibberellic acid or auxin. The cmal mutant grew poorer than wild type, whereas the CMAL‐overexpressing transgenic Arabidopsis plants grew better than wild type in the presence of abscisic acid. Altogether, these results indicate that CMAL is an indispensable rRNA methyltransferase in chloroplasts and is crucial for chloroplast biogenesis and function, photosynthesis, and hormone response during plant growth and development.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
PROMOTIONS
Scan using WeChat with your smartphone to view JIPB online
Follow us at @JIPBio on Twitter

PUBLISHED BY

ACKNOWLEDGEMENTS

Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22