Biotechnology

    Default Latest Most Read
    Please wait a minute...
    For Selected: Toggle Thumbnails
      
    MetMiner: A user-friendly pipeline for large-scale plant metabolomics data analysis
    Xiao Wang, Shuang Liang, Wenqi Yang, Ke Yu, Fei Liang, Bing Zhao, Xiang Zhu, Chao Zhou, Luis A. J. Mur, Jeremy A. Roberts, Junli Zhang, Xuebin Zhang
    J Integr Plant Biol 2024, 66 (11): 2329-2345.  
    doi: 10.1111/jipb.13774
    Abstract (Browse 76)  |   Save
    The utilization of metabolomics approaches to explore the metabolic mechanisms underlying plant fitness and adaptation to dynamic environments is growing, highlighting the need for an efficient and user-friendly toolkit tailored for analyzing the extensive datasets generated by metabolomics studies. Current protocols for metabolome data analysis often struggle with handling large-scale datasets or require programming skills. To address this, we present MetMiner (https://github.com/ShawnWx2019/MetMiner), a user-friendly, full-functionality pipeline specifically designed for plant metabolomics data analysis. Built on R shiny, MetMiner can be deployed on servers to utilize additional computational resources for processing large-scale datasets. MetMiner ensures transparency, traceability, and reproducibility throughout the analytical process. Its intuitive interface provides robust data interaction and graphical capabilities, enabling users without prior programming skills to engage deeply in data analysis. Additionally, we constructed and integrated a plant-specific mass spectrometry database into the MetMiner pipeline to optimize metabolite annotation. We have also developed MDAtoolkits, which include a complete set of tools for statistical analysis, metabolite classification, and enrichment analysis, to facilitate the mining of biological meaning from the datasets. Moreover, we propose an iterative weighted gene co-expression network analysis strategy for efficient biomarker metabolite screening in large-scale metabolomics data mining. In two case studies, we validated MetMiner's efficiency in data mining and robustness in metabolite annotation. Together, the MetMiner pipeline represents a promising solution for plant metabolomics analysis, providing a valuable tool for the scientific community to use with ease.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    SapBase: A central portal for functional and comparative genomics of Sapindaceae species
    Jiawei Li, Chengjie Chen, Zaohai Zeng, Fengqi Wu, Junting Feng, Bo Liu, Yingxiao Mai, Xinyi Chu, Wanchun Wei, Xin Li, Yanyang Liang, YuanLong Liu, Jing Xu, Rui Xia
    J Integr Plant Biol 2024, 66 (8): 1561-1570.  
    DOI: 10.1111/jipb.13680
    Abstract (Browse 87)  |   Save
    The Sapindaceae family, encompassing a wide range of plant forms such as herbs, vines, shrubs, and trees, is widely distributed across tropical and subtropical regions. This family includes economically important crops like litchi, longan, rambutan, and ackee. With the wide application of genomic technologies in recent years, several Sapindaceae plant genomes have been decoded, leading to an accumulation of substantial omics data in this field. This surge in data highlights the pressing need for a unified genomic data center capable of storing, sharing, and analyzing these data. Here, we introduced SapBase, that is, the Sapindaceae Genome Database. SapBase houses seven published plant genomes alongside their corresponding gene structure and functional annotations, small RNA annotations, gene expression profiles, gene pathways, and synteny block information. It offers user-friendly features for gene information mining, co-expression analysis, and inter-species comparative genomic analysis. Furthermore, we showcased SapBase's extensive capacities through a detailed bioinformatic analysis of a MYB gene in litchi. Thus, SapBase could serve as an integrative genomic resource and analysis platform for the scientific exploration of Sapinaceae species and their comparative studies with other plants.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Oomycete Nudix effectors display WY-Nudix conformation and mRNA decapping activity
    Baodian Guo, Qinli Hu, Bangwei Wang, Deqiang Yao, Haonan Wang, Guanghui Kong, Chenyang Han, Suomeng Dong, Fengquan Liu, Weiman Xing, Yuanchao Wang
    J Integr Plant Biol 2024, 66 (8): 1548-1552.  
    doi: 10.1111/jipb.13712
    Abstract (Browse 77)  |   Save
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions
    Jie Wang, Honghong Wu, Yichao Wang, Wuwei Ye, Xiangpei Kong, Zujun Yin
    J Integr Plant Biol 2024, 66 (7): 1274-1294.  
    DOI: 10.1111/jipb.13652
    Abstract (Browse 128)  |   Save
    By 2050, the global population is projected to reach 9 billion, underscoring the imperative for innovative solutions to increase grain yield and enhance food security. Nanotechnology has emerged as a powerful tool, providing unique solutions to this challenge. Nanoparticles (NPs) can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties. Moreover, they can be used to monitor crop health status and augment plant resilience against abiotic stresses (such as salinity, drought, heavy metals, and extreme temperatures) that endanger global agriculture. Application of NPs can enhance stress tolerance mechanisms in plants, minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality. This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers, policymakers, and agricultural practitioners. With thoughtful stewardship, nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Maize gets an iron boost: Biofortification breakthrough holds promise to combat iron deficiency
    Sunil Kumar Sahu
    J Integr Plant Biol 2024, 66 (4): 635-637.  
    doi: 10.1111/jipb.13623
    Abstract (Browse 168)  |   Save
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Expansion and improvement of ChinaMu by MuT-seq and chromosome-level assembly of the Mu-starter genome
    Lei Liang, Yuancong Wang, Yanbin Han, Yicong Chen, Mengfei Li, Yibo Wu, Zeyang Ma, Han Zhao and Rentao Song
    J Integr Plant Biol 2024, 66 (4): 645-659.  
    doi: 10.1111/jipb.13637
    Abstract (Browse 147)  |   Save
    ChinaMu is the largest sequence-indexed Mutator (Mu) transposon insertional library in maize (Zea mays). In this study, we made significant improvements to the size and quality of the ChinaMu library. We developed a new Mu-tag isolation method Mu-Tn5-seq (MuT-seq). Compared to the previous method used by ChinaMu, MuT-seq recovered 1/3 more germinal insertions, while requiring only about 1/14 of the sequencing volume and 1/5 of the experimental time. Using MuT-seq, we identified 113,879 germinal insertions from 3,168 Mu-active F1 families. We also assembled a high-quality genome for the Mu-active line Mu-starter, which harbors the initial active MuDR element and was used as the pollen donor for the mutation population. Using the Mu-starter genome, we recovered 33,662 (15.6%) additional germinal insertions in 3,244 (7.4%) genes in the Mu-starter line. The Mu-starter genome also improved the assignment of 117,689 (54.5%) germinal insertions. The newly upgraded ChinaMu dataset currently contains 215,889 high-quality germinal insertions. These insertions cover 32,224 pan-genes in the Mu-starter and B73Ref5 genomes, including 23,006 (80.4%) core genes shared by the two genomes. As a test model, we investigated Mu insertions in the pentatricopeptide repeat (PPR) superfamily, discovering insertions for 92% (449/487) of PPR genes in ChinaMu, demonstrating the usefulness of ChinaMu as a functional genomics resource for maize.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    The Ti-TAN plasmid toolbox for TurboID-based proximity labeling assays in Nicotiana benthamiana
    Huang Tan, Yu Zhou, Erik Dinius and Rosa Lozano‐Durán
    J Integr Plant Biol 2024, 66 (2): 166-168.  
    doi: 10.1111/jipb.13610
    Abstract (Browse 102)  |   Save
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Simple method for transformation and gene editing in medicinal plants
    Xuesong Cao, Hongtao Xie, Minglei Song, Lianghui Zhao, Hailiang Liu, Guofu Li and Jian‐Kang Zhu
    J Integr Plant Biol 2024, 66 (1): 17-19.  
    doi: 10.1111/jipb.13593
    Abstract (Browse 511)  |   Save
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Predicting community traits along an alpine grassland transect using field imaging spectroscopy
    Feng Zhang, Wenjuan Wu, Lang Li, Xiaodi Liu, Guangsheng Zhou and Zhenzhu Xu
    J Integr Plant Biol 2023, 65 (12): 2604-2618.  
    DOI: 10.1111/jipb.13572
    Abstract (Browse 158)  |   Save
    Assessing plant community traits is important for understanding how terrestrial ecosystems respond and adapt to global climate change. Field hyperspectral remote sensing is effective for quantitatively estimating vegetation properties in most terrestrial ecosystems, although it remains to be tested in areas with dwarf and sparse vegetation, such as the Tibetan Plateau. We measured canopy reflectance in the Tibetan Plateau using a handheld imaging spectrometer and conducted plant community investigations along an alpine grassland transect. We estimated community structural and functional traits, as well as community function based on a field survey and laboratory analysis using 14 spectral vegetation indices (VIs) derived from hyperspectral images. We quantified the contributions of environmental drivers, VIs, and community traits to community function by structural equation modelling (SEM). Univariate linear regression analysis showed that plant community traits are best predicted by the normalized difference vegetation index, enhanced vegetation index, and simple ratio. Structural equation modelling showed that VIs and community traits positively affected community function, whereas environmental drivers and specific leaf area had the opposite effect. Additionally, VIs integrated with environmental drivers were indirectly linked to community function by characterizing the variations in community structural and functional traits. This study demonstrates that community-level spectral reflectance will help scale plant trait information measured at the leaf level to larger-scale ecological processes. Field imaging spectroscopy represents a promising tool to predict the responses of alpine grassland communities to climate change.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    De novo creation of popcorn-like fragrant foxtail millet
    Yanyan Zhang, Qiang He, Shihui Zhang, Xinyu Man, Yi Sui, Guanqing Jia, Sha Tang, Hui Zhi, Chuanyin Wu and Xianmin Diao
    J Integr Plant Biol 2023, 65 (11): 2412-2415.  
    doi: 10.1111/jipb.13556
    Abstract (Browse 199)  |   Save
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Efficient CRISPR/Cas9-mediated genome editing in sheepgrass (Leymus chinensis)
    Zhelong Lin, Lei Chen, Shanjie Tang, Mengjie Zhao, Tong Li, Jia You, Changqing You, Boshu Li, Qinghua Zhao, Dongmei Zhang, Jianli Wang, Zhongbao Shen, Xianwei Song, Shuaibin Zhang and Xiaofeng Cao
    J Integr Plant Biol 2023, 65 (11): 2416-2420.  
    DOI: 10.1111/jipb.13567
    Abstract (Browse 256)  |   Save
    The lack of genome editing platforms has hampered efforts to study and improve forage crops that can be grown on lands not suited to other crops. Here, we established efficient Agrobacterium-mediated clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) genome editing in a perennial, stress-tolerant forage grass, sheepgrass (Leymus chinensis). By screening for active single-guide RNAs (sgRNAs), accessions that regenerate well, suitable Agrobacterium strains, and optimal culture media, and co-expressing the morphogenic factor TaWOX5, we achieved 11% transformation and 5.83% editing efficiency in sheepgrass. Knocking out Teosinte Branched1 (TB1) significantly increased tiller number and biomass. This study opens avenues for studying gene function and breeding in sheepgrass.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    The marksman: Bioactivated nematicides selectively kill plant-parasitic nematodes
    Yuwen Cao, Aziz Ul Ikram, Jianping Chen, Zongtao Sun and Jian Chen
    J Integr Plant Biol 2023, 65 (10): 2239-2241.  
    doi: 10.1111/jipb.13546
    Abstract (Browse 118)  |   Save
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Cas9-targeted Nanopore sequencing rapidly elucidates the transposition preferences and DNA methylation profiles of mobile elements in plants
    Pavel Merkulov, Sofya Gvaramiya, Maxim Dudnikov, Roman Komakhin, Murad Omarov, Alina Kocheshkova, Zakhar Konstantinov, Alexander Soloviev, Gennady Karlov, Mikhail Divashuk and Ilya Kirov
    J Integr Plant Biol 2023, 65 (10): 2242-2261.  
    DOI: 10.1111/jipb.13555
    Abstract (Browse 543)  |   Save
    Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9-targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ (EVD) retrotransposon in wild-type Arabidopsis thaliana and rapidly obtained up to 40×sequence coverage. Analysis of hemizygous T-DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 (decrease in DNA methylation 1) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs. Finally, we detected hypomethylation of novel somatic insertions for two ONSENs. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T-DNA insertion mutants and transgenic plants.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    The transcription factor NAC102 confers cadmium tolerance by regulating WAKL11 expression and cell wall pectin metabolism in Arabidopsis
    Guang Hao Han, Ru Nan Huang, Li Hong Hong, Jia Xi Xu, Yi Guo Hong, Yu Huan Wu and Wei Wei Chen
    J Integr Plant Biol 2023, 65 (10): 2262-2278.  
    DOI: 10.1111/jipb.13557
    Abstract (Browse 272)  |   Save
    Cadmium (Cd) toxicity severely limits plant growth and development. Moreover, Cd accumulation in vegetables, fruits, and food crops poses health risks to animals and humans. Although the root cell wall has been implicated in Cd stress in plants, whether Cd binding by cell wall polysaccharides contributes to tolerance remains controversial, and the mechanism underlying transcriptional regulation of cell wall polysaccharide biosynthesis in response to Cd stress is unknown. Here, we functionally characterized an Arabidopsis thaliana NAC-type transcription factor, NAC102, revealing its role in Cd stress responses. Cd stress rapidly induced accumulation of NAC102.1, the major transcript encoding functional NAC102, especially in the root apex. Compared to wild type (WT) plants, a nac102 mutant exhibited enhanced Cd sensitivity, whereas NAC102.1-overexpressing plants displayed the opposite phenotype. Furthermore, NAC102 localizes to the nucleus, binds directly to the promoter of WALL-ASSOCIATED KINASE-LIKE PROTEIN11 (WAKL11), and induces transcription, thereby facilitating pectin degradation and decreasing Cd binding by pectin. Moreover, WAKL11 overexpression restored Cd tolerance in nac102 mutants to the WT levels, which was correlated with a lower pectin content and lower levels of pectin-bound Cd. Taken together, our work shows that the NAC102-WAKL11 module regulates cell wall pectin metabolism and Cd binding, thus conferring Cd tolerance in Arabidopsis.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    A straight-forward seed production technology system for foxtail millet (Setaria italica)
    Wei Zhang, Xiantao Qi, Hui Zhi, Yushuang Ren, Linlin Zhang, Yuanzhu Gao, Yi Sui, Haoshan Zhang, Sha Tang, Guanqing Jia, Chuanxiao Xie, Chuanyin Wu and Xianmin Diao
    J Integr Plant Biol 2023, 65 (9): 2023-2035.  
    DOI: 10.1111/jipb.13503
    Abstract (Browse 257)  |   Save
    For autogamous crops, a precondition for using heterosis is to produce sufficient pure male-sterile female parents that can be used to produce hybrid seeds. To date, cytoplasmic male sterility (CMS) and environment-sensitive genic male sterility (EGMS) have been used commercially to exploit heterosis for autogamous species. However, neither CMS nor EGMS has been established for foxtail millet (Setaria italica). Here, we report on the establishment and application of a seed production technology (SPT) system for this crop. First, we established a DsRed-based SPT system, but found that it was unsuitable because it required the use of a fluorescent device for seed sorting. Instead, we constructed an SPT system with de novo betalain biosynthesis as the selection marker. This allowed us to distinguish transgenic seeds with the naked eye, thereby facilitating the identification of SPT maintainer line seeds. In this system, a seed sorter was not required to obtain sufficient seeds. The key point of the strategy is that the seed pool of the SPT maintainer line is propagated by artificial identification and harvesting of male-fertile individuals in the field, and the male-sterile line seed pool for hybrid production is produced and propagated by free pollination of male-sterile plants with the SPT maintainer line. In a field experiment, we obtained 423.96 kg male-sterile line seeds per acre, which is sufficient to plant 700.18 acres of farmland for hybrid seed production or male-sterile line reproduction. Our study therefore describes a powerful tool for hybrid seed production in foxtail millet, and demonstrates how the SPT system can be used for a small-grained crop with high reproduction efficiency.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(2)
      
    Integrating multiplicate data: A new trend for taxonomic study
    De‐Yuan Hong
    J Integr Plant Biol 2023, 65 (9): 2021-2022.  
    doi: 10.1111/jipb.13548
    Abstract (Browse 130)  |   Save
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Development of an efficient expression system with large cargo capacity for interrogation of gene function in bamboo based on bamboo mosaic virus
    Yandong Jin, Baijie Wang, Mingchuan Bao, Yujie Li, Shengwu Xiao, Yuhua Wang, Jun Zhang, Liangzhen Zhao, Hangxiao Zhang, Yau-Heiu Hsu, Mingjie Li and Lianfeng Gu
    J Integr Plant Biol 2023, 65 (6): 1369-1382.  
    DOI: 10.1111/jipb.13468
    Abstract (Browse 267)  |   Save
    Bamboo is one of the fastest growing plants among monocotyledonous species and is grown extensively in subtropical regions. Although bamboo has high economic value and produces much biomass quickly, gene functional research is hindered by the low efficiency of genetic transformation in this species. We therefore explored the potential of a bamboo mosaic virus (BaMV)- mediated expression system to investigate genotype-phenotype associations. We determined that the sites between the triple gene block proteins (TGBps) and the coat protein (CP) of BaMV are the most efficient insertion sites for the expression of exogenous genes in both monopodial and sympodial bamboo species. Moreover, we validated this system by individually overexpressing the two endogenous genes ACE1 and DEC1, which resulted in the promotion and suppression of internode elongation, respectively. In particular, this system was able to drive the expression of three 2A-linked betalain biosynthesis genes (more than 4 kb in length) to produce betalain, indicating that it has high cargo capacity and may provide the prerequisite basis for the development of a DNA-free bamboo genome editing platform in the future. Since BaMV can infect multiple bamboo species, we anticipate that the system described in this study will greatly contribute to gene function research and further promote the molecular breeding of bamboo.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    A high-resolution transcriptomic atlas depicting nitrogen fixation and nodule development in soybean
    Baocheng Sun, Yu Wang, Qun Yang, Han Gao, Haiyu Niu, Yansong Li, Qun Ma, Qing Huan, Wenfeng Qian and Bo Ren
    J Integr Plant Biol 2023, 65 (6): 1536-1552.  
    doi: 10.1111/jipb.13495
    Abstract (Browse 287)  |   Save
    Although root nodules are essential for biological nitrogen fixation in legumes, the cell types and molecular regulatory mechanisms contributing to nodule development and nitrogen fixation in determinate nodule legumes, such as soybean (Glycine max), remain incompletely understood. Here, we generated a single-nucleus resolution transcriptomic atlas of soybean roots and nodules at 14 days post inoculation (dpi) and annotated 17 major cell types, including six that are specific to nodules. We identified the specific cell types responsible for each step in the ureides synthesis pathway, which enables spatial compartmentalization of biochemical reactions during soybean nitrogen fixation. By utilizing RNA velocity analysis, we reconstructed the differentiation dynamics of soybean nodules, which differs from those of indeterminate nodules in Medicago truncatula. Moreover, we identified several putative regulators of soybean nodulation and two of these genes, GmbHLH93 and GmSCL1, were as-yet uncharacterized in soybean. Overexpression of each gene in soybean hairy root systems validated their respective roles in nodulation. Notably, enrichment for cytokinin-related genes in soybean nodules led to identification of the cytokinin receptor, GmCRE1, as a prominent component of the nodulation pathway. GmCRE1 knockout in soybean resulted in a striking nodule phenotype with decreased nitrogen fixation zone and depletion of leghemoglobins, accompanied by downregulation of nodule-specific gene expression, as well as almost complete abrogation of biological nitrogen fixation. In summary, this study provides a comprehensive perspective of the cellular landscape during soybean nodulation, shedding light on the underlying metabolic and developmental mechanisms of soybean nodule formation.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Single‐cell RNA‐seq of Lotus japonicus provide insights into identification and function of root cell types of legume
    Zhanmin Sun, Sanjie Jiang, Dan Wang, Linxia Li, Boxin Liu, Qifan Ran, Lizhen Hu, Junbo Xiong, Yixiong Tang, Xiaofeng Gu, Yanmin Wu and Zhe Liang
    J Integr Plant Biol 2023, 65 (5): 1147-1152.  
    DOI: 10.1111/jipb.13435
    Abstract (Browse 268)  |   Save
    The roots of legume plant play a crucial role in nitrogen fixation. However, the transcriptomes of different cell types of legume root and their functions remain largely unknown. Here, we performed single‐cell RNA sequencing and profiled more than 22,000 single cells from root tips of Lotus japonicus, a model species of legume. We identified seven clusters corresponding to seven major cell types, which were validated by in situ hybridization. Further analysis revealed regulatory programs including phytohormone and nodulation associated with specific cell types, and revealed conserved and diverged features for the cell types. Our results represent the first single‐cell resolution transcriptome for legume root tips and a valuable resource for studying the developmental and physiological functions of various cell types in legumes.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Efficient genotype-independent cotton genetic transformation and genome editing
    Xiaoyang Ge, Jieting Xu, Zhaoen Yang, Xiaofeng Yang, Ye Wang, Yanli Chen, Peng Wang and Fuguang Li
    J Integr Plant Biol 2023, 65 (4): 907-917.  
    doi: 10.1111/jipb.13427
    Abstract (Browse 477)  |   Save
    Cotton (Gossypium spp.) is one of the most important fiber crops worldwide. In the last two decades, transgenesis and genome editing have played important roles in cotton improvement. However, genotype dependence is one of the key bottlenecks in generating transgenic and gene‐edited cotton plants through either particle bombardment or Agrobacterium‐mediated transformation. Here, we developed a shoot apical meristem (SAM) cell‐ mediated transformation system (SAMT) that allowed the transformation of recalcitrant cotton genotypes including widely grown upland cotton (Gossypium hirsutum), Sea island cotton (Gossypium barbadense), and Asiatic cotton (Gossypium arboreum). Through SAMT, we successfully introduced two foreign genes, GFP and RUBY, into SAM cells of some recalcitrant cotton genotypes. Within 2–3 months, transgenic adventitious shoots generated from the axillary meristem zone could be recovered and grown into whole cotton plants. The GFP fluorescent signal and betalain accumulation could be observed in various tissues in GFP‐ and RUBY‐positive plants, as well as in their progenies, indicating that the transgenes were stably integrated into the genome and transmitted to the next generation. Furthermore, using SAMT, we successfully generated edited cotton plants with inheritable targeted mutagenesis in the GhPGF and GhRCD1 genes through CRISPR/Cas9‐mediated genome editing. In summary, the established SAMT transformation system here in this study bypasses the embryogenesis process during tissue culture in a conventional transformation procedure and significantly accelerates the generation of transgenic and gene‐edited plants for genetic improvement of recalcitrant cotton varieties.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(12)
      
    Optimized prime editing efficiently generates heritable mutations in maize
    Dexin Qiao, Junya Wang, Min‐Hui Lu, Cuiping Xin, Yiping Chai, Yuanyuan Jiang, Wei Sun, Zhenghong Cao, Siyi Guo, Xue‐Chen Wang and Qi‐Jun Chen
    J Integr Plant Biol 2023, 65 (4): 900-906.  
    doi: 10.1111/jipb.13428
    Abstract (Browse 283)  |   Save
    Low efficiency is the main obstacle to using prime editing in maize (Zea mays). Recently, prime‐editing efficiency was greatly improved in mammalian cells and rice (Oryza sativa) plants by engineering prime‐ editing guide RNAs (pegRNAs), optimizing the prime editor (PE) protein, and manipulating cellular determinants of prime editing. In this study, we tested PEs optimized via these three strategies in maize. We demonstrated that the ePE5max system, composed of PEmax, epegRNAs (pegRNA‐ evopreQ. 1), nicking single guide RNAs (sgRNAs), and MLH1dn, efficiently generated heritable mutations that conferred resistance to herbicides that inhibit 5‐enolpyruvylshikimate‐3‐phosphate synthase (EPSPS), acetolactate synthase (ALS), or acetyl CoA carboxylase (ACCase) activity. Collectively, we demonstrate that the ePE5max system has sufficient efficiency to generate heritable (homozygous or heterozygous) mutations in maize target genes and that the main obstacle to using PEs in maize has thus been removed.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(6)
      
    A prolific and robust whole-genome genotyping method using PCR amplification via primer-template mismatched annealing
    Sheng Zhao, Cuicui Zhang, Liqun Wang, Minxuan Luo, Peng Zhang, Yue Wang, Waqar Afzal Malik, Yue Wang, Peng Chen, Xianjin Qiu, Chongrong Wang, Hong Lu, Yong Xiang, Yuwen Liu, Jue Ruan, Qian Qian, Haijian Zhi and Yuxiao Chang
    J Integr Plant Biol 2023, 65 (3): 633-645.  
    doi: 10.1111/jipb.13395
    Abstract (Browse 407)  |   Save
    Whole-genome genotyping methods are important for breeding. However, it has been challenging to develop a robust method for simultaneous foreground and background genotyping that can easily be adapted to different genes and species. In our study, we accidently discovered that in adapter ligation-mediated PCR, the amplification by primer-template mismatched annealing (PTMA) along the genome could generate thousands of stable PCR products. Based on this observation, we consequently developed a novel method for simultaneous foreground and background integrated genotyping by sequencing (FBI-seq) using one specific primer, in which foreground genotyping is performed by primer-template perfect annealing (PTPA), while background genotyping employs PTMA. Unlike DNA arrays, multiple PCR, or genome target enrichments, FBI-seq requires little preliminary work for primer design and synthesis, and it is easily adaptable to different foreground genes and species. FBI-seq therefore provides a prolific, robust, and accurate method for simultaneous foreground and background genotyping to facilitate breeding in the post-genomics era.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(1)
      
    Time series canopy phenotyping enables the identification of genetic variants controlling dynamic phenotypes in soybean
    Delin Li, Dong Bai, Yu Tian, Ying-Hui Li, Chaosen Zhao, Qi Wang, Shiyu Guo, Yongzhe Gu, Xiaoyan Luan, Ruizhen Wang, Jinliang Yang, Malcolm J. Hawkesford, James C. Schnable, Xiuliang Jin, Li-Juan Qiu
    J Integr Plant Biol 2023, 65 (1): 117-132.  
    doi: 10.1111/jipb.13380
    Abstract (Browse 320)  |   Save
    Advances in plant phenotyping technologies are dramatically reducing the marginal costs of collecting multiple phenotypic measurements across several time points. Yet, most current approaches and best statistical practices implemented to link genetic and phenotypic variation in plants have been developed in an era of single-time-point data. Here, we used time-series phenotypic data collected with an unmanned aircraft system for a large panel of soybean (Glycine max (L.) Merr.) varieties to identify previously uncharacterized loci. Specifically, we focused on the dissection of canopy coverage (CC) variation from this rich data set. We also inferred the speed of canopy closure, an additional dimension of CC, from the time-series data, as it may represent an important trait for weed control. Genome-wide association studies (GWASs) identified 35 loci exhibiting dynamic associations with CC across developmental stages. The time-series data enabled the identification of 10 known flowering time and plant height quantitative trait loci (QTLs) detected in previous studies of adult plants and the identification of novel QTLs influencing CC. These novel QTLs were disproportionately likely to act earlier in development, which may explain why they were missed in previous single-time-point studies. Moreover, this time-series data set contributed to the high accuracy of the GWASs, which we evaluated by permutation tests, as evidenced by the repeated identification of loci across multiple time points. Two novel loci showed evidence of adaptive selection during domestication, with different genotypes/haplotypes favored in different geographic regions. In summary, the time-series data, with soybean CC as an example, improved the accuracy and statistical power to dissect the genetic basis of traits and offered a promising opportunity for crop breeding with quantitative growth curves.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(7)
      
    A cost-effective tsCUT&Tag method for profiling transcription factor binding landscape
    Leiming Wu, Zi Luo, Yanni Shi, Yizhe Jiang, Ruonan Li, Xinxin Miao, Fang Yang, Qing Li, Han Zhao, Jiquan Xue, Shutu Xu, Tifu Zhang and Lin Li
    J Integr Plant Biol 2022, 64 (11): 2033-2038.  
    doi: 10.1111/jipb.13354
    Abstract (Browse 393)  |   Save

    Knowledge of the transcription factor binding landscape (TFBL) is necessary to analyze gene regulatory networks for important agronomic traits. However, a low-cost and high-throughput in vivo chromatin profiling method is still lacking in plants. Here, we developed a transient and simplified cleavage under targets and tagmentation (tsCUT&Tag) that combines transient expression of transcription factor proteins in protoplasts with a simplified CUT&Tag without nucleus extraction. Our tsCUT&Tag method provided higher data quality and signal resolution with lower sequencing depth compared with traditional ChIP-seq. Furthermore, we developed a strategy combining tsCUT&Tag with machine learning, which has great potential for profiling the TFBL across plant development.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(8)
      
    Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target
    Yihao Yang, Ziyan Shen, Youguang Li, Chenda Xu, Han Xia, Hao Zhuang, Shengyuan Sun, Min Guo and Changjie Yan
    J Integr Plant Biol 2022, 64 (10): 1860-1865.  
    doi: 10.1111/jipb.13334
    Abstract (Browse 381)  |   Save
    Rice eating and cooking quality (ECQ) is a major concern of breeders and consumers, determining market competitiveness worldwide. Rice grain protein content (GPC) is negatively related to ECQ, making it possible to improve ECQ by manipulating GPC. However, GPC is genetically complex and sensitive to environmental conditions; therefore, little progress has been made in traditional breeding for ECQ. Here, we report that CRISPR/Cas9-mediated knockout of genes encoding the grain storage protein glutelin rapidly produced lines with downregulated GPC and improved ECQ. Our finding provides a new strategy for improving rice ECQ.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(5)
      
    Cas12a-based on-site, rapid detection of genetically modified crops
    Zhiqiang Duan, Xiaoliang Yang, Xingkun Ji, Ying Chen, Xiaomu Niu, Anping Guo, Jian‐Kang Zhu, Feng Li, Zhaobo Lang and Hui Zhao
    J Integr Plant Biol 2022, 64 (10): 1856-1859.  
    doi: 10.1111/jipb.13342
    Abstract (Browse 427)  |   Save
    A CRISPR/LbCas12a-based nucleic acid detection method that uses crude leaf extracts as samples and is rapid (≤40 min for a full run) and highly sensitive (0.01%) can be used to monitor genetically modified organisms in the field.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(2)
      
    Establishment of a dmp based maternal haploid induction system for polyploid Brassica napus and Nicotiana tabacum
    Yu Zhong, Yuwen Wang, Baojian Chen, Jinchu Liu, Dong Wang, Mengran Li, Xiaolong Qi, Chenxu Liu, Kim Boutilier and Shaojiang Chen
    J Integr Plant Biol 2022, 64 (6): 1281-1294.  
    doi: 10.1111/jipb.13244
    Abstract (Browse 371)  |   Save

    Doubled haploid (DH) technology is used to obtain homozygous lines in a single generation, a technique that significantly accelerates the crop breeding trajectory. Traditionally, in vitro culture is used to generate DHs, but this technique is limited by species and genotype recalcitrance. In vivo haploid induction (HI) through seed is widely and efficiently used in maize and was recently extended to several other crops. Here we show that in vivo HI can be triggered by mutation of DMP maternal haploid inducer genes in allopolyploid (allotetraploid) Brassica napus and Nicotiana tabacum. We developed a pipeline for selection of DMP orthologs for clustered regularly interspaced palindromic repeats mutagenesis and demonstrated average amphihaploid induction rates of 2.4% and 1.2% in multiple B. napus and N. tabacum genotypes, respectively. These results further confirmed the HI ability of DMP gene in polyploid dicot crops. The DMP-HI system offers a novel DH technology to facilitate breeding in these crops. The success of this approach and the conservation of DMP genes in dicots suggest the broad applicability of this technique in other dicot crops.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(18)
      
    Testing the polar auxin transport model with a selective plasma membrane H+-ATPase inhibitor
    Yongqing Yang, Xiaohui Liu, Wei Guo, Wei Liu, Wei Shao, Jun Zhao, Junhong Li, Qing Dong, Liang Ma, Qun He, Yingzhang Li, Jianyong Han and Xiaoguang Lei
    J Integr Plant Biol 2022, 64 (6): 1229-1245.  
    DOI: 10.1111/jipb.13256
    Abstract (Browse 274)  |   Save

    Auxin is unique among plant hormones in that its function requires polarized transport across plant cells. A chemiosmotic model was proposed to explain how polar auxin transport is derived by the H+ gradient across the plasma membrane (PM) established by PM H+-adenosine triphosphatases (ATPases). However, a classical genetic approach by mutations in PM H+-ATPase members did not result in the ablation of polar auxin distribution, possibly due to functional redundancy in this gene family. To confirm the crucial role of PM H+-ATPases in the polar auxin transport model, we employed a chemical genetic approach. Through a chemical screen, we identified protonstatin-1 (PS-1), a selective small-molecule inhibitor of PM H+-ATPase activity that inhibits auxin transport. Assays with transgenic plants and yeast strains showed that the activity of PM H+-ATPases affects auxin uptake as well as acropetal and basipetal polar auxin transport. We propose that PS-1 can be used as a tool to interrogate the function of PM H+-ATPases. Our results support the chemiosmotic model in which PM H+-ATPase itself plays a fundamental role in polar auxin transport.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(5)
      
    Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles
    Zuo‐Ping Wang, Zhong‐Bao Zhang, Deng‐Yu Zheng, Tong‐Tong Zhang, Xiang‐Long Li, Chun Zhang, Rong Yu, Jian‐Hua Wei and Zhong‐Yi Wu
    J Integr Plant Biol 2022, 64 (6): 1145-1156.  
    doi: 10.1111/jipb.13263
    Abstract (Browse 521)  |   Save

    Current gene delivery methods for maize are limited to specific genotypes and depend on time-consuming and labor-intensive tissue culture techniques. Here, we report a new method to transfect maize that is culture-free and genotype independent. To enhance efficiency of DNA entry and maintain high pollen viability of 32%-55%, transfection was performed at cool temperature using pollen pretreated to open the germination aperture (40%–55%). Magnetic nanoparticles (MNPs) coated with DNA encoding either red fluorescent protein (RFP), β-glucuronidase gene (GUS), enhanced green fluorescent protein (EGFP) or bialaphos resistance (bar) was delivered into pollen grains, and female florets of maize inbred lines were pollinated. Red fluorescence was detected in 22% transfected pollen grains, and GUS stained 55% embryos at 18 d after pollination. Green fluorescence was detected in both silk filaments and immature kernels. The T1 generation of six inbred lines showed considerable EGFP or GUS transcripts (29%–74%) quantitated by polymerase chain reaction, and 5%–16% of the T1 seedlings showed immunologically active EGFP or GUS protein. Moreover, 1.41% of the bar transfected T1 plants were glufosinate resistant, and heritable bar gene was integrated into the maize genome effectively as verified by DNA hybridization. These results demonstrate that exogenous DNA could be delivered efficiently into elite maize inbred lines recalcitrant to tissue culture-mediated transformation and expressed normally through our genotype-independent pollen transfection system.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(20)
      
    Creation of fragrant sorghum by CRISPR/Cas9
    Dan Zhang, Sanyuan Tang, Peng Xie, Dekai Yang, Yaorong Wu, Shujing Cheng, Kai Du, Peiyong Xin, Jinfang Chu, Feifei Yu and Qi Xie
    J Integr Plant Biol 2022, 64 (5): 961-964.  
    doi: 10.1111/jipb.13232
    Abstract (Browse 459)  |   Save

    Sorghum, the fifth largest cereal crop, has high value as a staple food and raw material for liquor and vinegar brewing. Due to its high biomass and quality, it is also used as the second most planted silage resource. No fragrant sorghums are currently on the market. Through CRISPR/Cas9-mediated knockout of SbBADH2, we obtained sorghum lines with extraordinary aromatic smell in both seeds and leaves. Animal feeding experiments showed that fragrant sorghum leaves were attractable. We believe this advantage will produce great value in the sorghum market for both grain and whole biomass forage.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(13)
      
    SoySNP618K array: A high-resolution single nucleotide polymorphism platform as a valuable genomic resource for soybean genetics and breeding
    Yan‐Fei Li, Ying‐Hui Li, Shan‐Shan Su, Jochen C. Reif, Zhao‐Ming Qi, Xiao‐Bo Wang, Xing Wang, Yu Tian, De‐Lin Li, Ru‐Jian Sun, Zhang‐Xiong Liu, Ze‐Jun Xu, Guang‐Hui Fu, Ya‐Liang Ji, Qing‐Shan Chen, Ji‐Qiang Liu and Li‐Juan Qiu
    J Integr Plant Biol 2022, 64 (3): 632-648.  
    doi: 10.1111/jipb.13202
    Abstract (Browse 264)  |   Save
    Innovations in genomics have enabled the development of low-cost, high-resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate breeding progress and support basic research in crop science. Here, we developed and validated the SoySNP618K array (618,888 SNPs) for the important crop soybean. The SNPs were selected from whole-genome resequencing data containing 2,214 diverse soybean accessions; 29.34% of the SNPs mapped to genic regions representing 86.85% of the 56,044 annotated high-confidence genes. Identity-by-state analyses of 318 soybeans revealed 17 redundant accessions, highlighting the potential of the SoySNP618K array in supporting gene bank management. The patterns of population stratification and genomic regions enriched through domestication were highly consistent with previous findings based on resequencing data, suggesting that the ascertainment bias in the SoySNP618K array was largely compensated for. Genome-wide association mapping in combination with reported quantitative trait loci enabled fine-mapping of genes known to influence flowering time, E2 and GmPRR3b, and of a new candidate gene, GmVIP5. Moreover, genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate (>0.65). Thus, the SoySNP618K array is a valuable genomic tool that can be used to address many questions in applied breeding, germplasm management, and basic crop research.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(5)
      
    RNA silencing: From discovery and elucidation to application and perspectives
    Jian‐Hua Zhao and Hui‐Shan Guo
    J Integr Plant Biol 2022, 64 (2): 476-498.  
    doi: 10.1111/jipb.13213
    Abstract (Browse 276)  |   Save
    RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes. The discovery of natural trans-kingdom RNAi indicated that small RNAs act as signaling molecules and enable communication between organisms in different kingdoms. The phenomenon and potential mechanisms of trans-kingdom RNAi are among the most exciting research topics. To better understand trans-kingdom RNAi, we review the history of the discovery and elucidation of RNAi mechanisms. Based on canonical RNAi mechanisms, we summarize the major points of divergence around RNAi pathways in the main eukaryotes’ kingdoms, including plants, animals, and fungi. We review the representative incidents associated with the mechanisms and applications of trans-kingdom RNAi in crop protection, and discuss the critical factors that should be considered to develop successful trans-kingdom RNAi-based crop protection strategies.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
    Cited: Web of Science(17)
      
    Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus
    Hui Li, Xinren Dai, Xiong Huang, Mengxuan Xu, Qiao Wang, Xiaojing Yan, Ronald R. Sederoff and Quanzi Li
    J Integr Plant Biol 2021, 63 (11): 1906-1921.  
    DOI: 10.1111/jipb.13159
    Abstract (Browse 1142)  |   Save
    High-throughput single-cell RNA sequencing (scRNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method for the dropwise sequestration of single cells for sequencing, on protoplasts from the differentiating xylem of Populus alba×Populus glandulosa. The scRNA-seq profiled 9,798 cells, which were grouped into 12 clusters. Through characterization of differentially expressed genes in each cluster and RNA in situ hybridizations, we identified vessel cells, fiber cells, ray parenchyma cells and xylem precursor cells. Diffusion pseudotime analyses revealed the differentiating trajectory of vessels, fiber cells and ray parenchyma cells and indicated a different differentiation process between vessels and fiber cells, and a similar differentiation process between fiber cells and ray parenchyma cells. We identified marker genes for each cell type (cluster) and key candidate regulators during developmental stages of xylem cell differentiation. Our study generates a high-resolution expression atlas of wood formation at the single cell level and provides valuable information on wood formation.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Establishment of an efficient seed fluorescence reporter‐assisted CRISPR/Cas9 gene editing in maize
    Yuanyuan Yan, Jinjie Zhu, Xiantao Qi, Beijiu Cheng, Changlin Liu and Chuanxiao Xie
    J Integr Plant Biol 2021, 63 (9): 1671-1680.  
    doi: 10.1111/jipb.13086
    Abstract (Browse 452)  |   Save
    Genome editing by clustered regularly interspaced short palindromic sequences (CRISPR)/CRISPR‐associated protein 9 (Cas9) has revolutionized functional gene analysis and genetic improvement. While reporter‐assisted CRISPR/Cas systems can greatly facilitate the selection of genome‐edited plants produced via stable transformation, this approach has not been well established in seed crops. Here, we established the seed fluorescence reporter (SFR)‐assisted CRISPR/Cas9 systems in maize (Zea mays L.), using the red fluorescent DsRED protein expressed in the endosperm (En‐SFR/Cas9), embryos (Em‐SFR/Cas9), or both tissues (Em/En‐SFR/Cas9). All three SFRs showed distinct fluorescent patterns in the seed endosperm and embryo that allowed the selection of seeds carrying the transgene of having segregated the transgene out. We describe several case studies of the implementation of En‐SFR/Cas9, Em‐SFR/Cas9, and Em/En‐ SFR/Cas9 to identify plants not harboring the genome‐editing cassette but carrying the desired mutations at target genes in single genes or in small‐scale mutant libraries, and report on the successful generation of single‐target mutants and/or mutant libraries with En‐SFR/Cas9, Em‐SFR/Cas9, and Em/En‐SFR/Cas9. SFR‐assisted genome editing may have particular value for application scenarios with a low transformation frequency and may be extended to other important monocot seed crops.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Efficient generation of homozygous substitutions in rice in one generation utilizing an rABE8e base editor
    Chuang Wei, Chong Wang, Meng Jia, Hong‐Xuan Guo, Peng‐Yu Luo, Mu‐Gui Wang, Jian‐Kang Zhu and Hui Zhang
    J Integr Plant Biol 2021, 63 (9): 1595-1599.  
    doi: 10.1111/jipb.13089
    Abstract (Browse 492)  |   Save
    A new deaminase, TadA8e, was recently evolved in the laboratory. TadA8e catalyzes DNA deamination over 1,000 times faster than ABE7.10. We developed a high-efficiency adenine base editor, rABE8e (rice ABE8e), combining monomeric TadA8e, bis-bpNLS and codon optimization. rABE8e had substantially increased editing efficiencies at NG-protospacer adjacent motif (PAM) and NGG-PAM target sequences compared with ABEmax. For most targets, rABE8e exhibited nearly 100% editing efficiency and high homozygous substitution rates in the specific editing window, especially at Positions A5 and A6. The ability to rapidly generate plant materials with homozygous base substitutions will benefit gene function research and precision molecular breeding.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Development of an efficient plant dual cytosine and adenine editor
    Rongfang Xu, Fanna Kong, Ruiying Qin, Juan Li, Xiaoshuang Liu and Pengcheng Wei
    J Integr Plant Biol 2021, 63 (9): 1600-1605.  
    doi: 10.1111/jipb.13146
    Abstract (Browse 393)  |   Save
    An enhanced CDA-like (eCDAL) was established from Japanese lamprey CDA1-like 4 to achieve a high editing frequency in a broad region as a C-terminal cytosine base editors (CT-CBE). Then, a novel plant dual-base editor version 1(pDuBE1) was developed by integrating TadA-8e into eCDAL. The editing efficiency of pDuBE1 could reach to 87.6%, with frequencies of concurrent A-to-G and C-to-T conversions as high as 49.7% in stably transformed plant cells. Our results showed that pDuBE1 could mediate robust dual editing in plant genome, providing a powerful manipulation tool for precise crop breeding and screening platforms for in planta direct evolution.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Simultaneous gene editing of three homoeoalleles in self-incompatible allohexaploid grasses
    Liang Zhang, Tao Wang, Guangyang Wang, Aoyue Bi, Misganaw Wassie, Yan Xie, Liwen Cao, Huawei Xu, Jinmin Fu, Liang Chen, Yang Zhao and Tao Hu
    J Integr Plant Biol 2021, 63 (8): 1410-1415.  
    doi: 10.1111/jipb.13101
    Abstract (Browse 312)  |   Save
    Clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been widely used for precise gene editing in plants. However, simultaneous gene editing of multiple homoeoalleles remains challenging, especially in self-incompatible polyploid plants. Here, we simultaneously introduced targeted mutations in all three homoeoalleles of two genes in the self-incompatible allohexaploid tall fescue, using both CRISPR/Cas9 and LbCas12a (LbCpf1) systems. Loss-of-function mutants of FaPDS exhibited albino leaves, while knockout of FaHSP17.9 resulted in impaired heat resistance in T0 generation of tall fescue. Moreover, these mutations were inheritable. Our findings demonstrate the feasibility of generating loss-of-function mutants in T0 generation polyploid perennial grasses using CRISPR/Cas systems.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Natural variation in linalool metabolites: One genetic locus, many functions?
    Jun He, Rayko Halitschke, Ian T. Baldwin and Meredith C. Schuman
    J Integr Plant Biol 2021, 63 (8): 1416-1421.  
    doi: 10.1111/jipb.13104
    Abstract (Browse 234)  |   Save
    The ubiquitous volatile linalool is metabolized in plants to nonvolatile derivatives. We studied Nicotiana attenuata plants which naturally vary in (S)-(+)-linalool contents, and lines engineered to produce either (R)-(-)- or (S)-(+)-linalool. Only (S)-(+)-linalool production was associated with slower growth of a generalist herbivore, and a large fraction was present as nonvolatile derivatives. We found that variation in volatile linalool and its nonvolatile glycosides mapped to the same genetic locus which harbored the biosynthetic gene, NaLIS, but that free linalool varied more in environmental responses. This study reveals how (S)-(+)-linalool and conjugates differ in their regulation and possible functions in resistance.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    LjaFGD: Lonicera japonica functional genomics database
    Qiaoqiao Xiao, Zhongqiu Li, Mengmeng Qu, Wenying Xu, Zhen Su and Jiaotong Yang
    J Integr Plant Biol 2021, 63 (8): 1422-1436.  
    DOI: 10.1111/jipb.13112
    Abstract (Browse 271)  |   Save
    Lonicera japonica Thunb., a traditional Chinese herb, has been used for treating human diseases for thousands of years. Recently, the genome of L. japonica has been decoded, providing valuable information for research into gene function. However, no comprehensive database for gene functional analysis and mining is available for L. japonica. We therefore constructed LjaFGD (www.gzybioinformatics.cn/LjaFGD and bioinformatics.cau.edu.cn/LjaFGD), a database for analyzing and comparing gene function in L. japonica. We constructed a gene co-expression network based on 77 RNA-seq samples, and then annotated genes of L. japonica by alignment against protein sequences from public databases. We also introduced several tools for gene functional analysis, including Blast, motif analysis, gene set enrichment analysis, heatmap analysis, and JBrowse. Our co-expression network revealed that MYB and WRKY transcription factor family genes were co-expressed with genes encoding key enzymes in the biosynthesis of chlorogenic acid and luteolin in L. japonica. We used flavonol synthase 1 (LjFLS1) as an example to show the reliability and applicability of our database. LjaFGD and its various associated tools will provide researchers with an accessible platform for retrieving functional information on L. japonica genes to further biological discovery.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Plant-based, adjuvant-free, potent multivalent vaccines for avian influenza virus via Lactococcus surface display
    Shi‐Jian Song, Gyeong‐Im Shin, Jinyong Noh, Jiho Lee, Deok‐Hwan Kim, Gyeongryul Ryu, Gyeongik Ahn, Hyungmin Jeon, Hai‐Ping Diao, Youngmin Park, Min Gab Kim, Woe‐Yeon Kim, Young‐Jin Kim, Eun‐Ju Sohn, Chang Seon Song and Inhwan Hwang
    J Integr Plant Biol 2021, 63 (8): 1505-1520.  
    DOI: 10.1111/jipb.13141
    Abstract (Browse 312)  |   Save
    Influenza epidemics frequently and unpredictably break out all over the world, and seriously affect the breeding industry and human activity. Inactivated and live attenuated viruses have been used as protective vaccines but exhibit high risks for biosafety. Subunit vaccines enjoy high biosafety and specificity but have a few weak points compared to inactivated virus or live attenuated virus vaccines, especially in low immunogenicity. In this study, we developed a new subunit vaccine platform for a potent, adjuvant-free, and multivalent vaccination. The ectodomains of hemagglutinins (HAs) of influenza viruses were expressed in plants as trimers (tHAs) to mimic their native forms. tHAs in plant extracts were directly used without purification for binding to inactivated Lactococcus (iLact) to produce iLact-tHAs, an antigen-carrying bacteria-like particle (BLP). tHAs BLP showed strong immune responses in mice and chickens without adjuvants. Moreover, simultaneous injection of two different antigens by two different formulas, tHAH5N6 + H9N2 BLP or a combination of tHAH5N6 BLP and tHAH9N2 BLP, led to strong immune responses to both antigens. Based on these results, we propose combinations of plant-based antigen production and BLP-based delivery as a highly potent and cost-effective platform for multivalent vaccination for subunit vaccines.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
Editorial Office, Journal of Integrative Plant Biology, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: +86 10 6283 6133 Fax: +86 10 8259 2636 E-mail: jipb@ibcas.ac.cn
Copyright © 2022 by the Institute of Botany, the Chinese Academy of Sciences
Online ISSN: 1744-7909 Print ISSN: 1672-9072 CN: 11-5067/Q
备案号:京ICP备16067583号-22